• 제목/요약/키워드: 건물일체형 태양광시스템

검색결과 58건 처리시간 0.037초

Cold facade형 BIPV시스템의 발전성능 분석 (Analysis of Performance of Building Integrated PV System of Cold Facade type)

  • 김현일;강기환;박경은;유권종;서승직
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.275-280
    • /
    • 2008
  • Photovoltaic(PV) permit the on-site production of electricity without concern for fuel supply or environmental adverse effects. The electrical power is produced without noise and little depletion of resources. So BIPV(Building-Integrated Photovoltaic) system have been increased around the world. Hereby the relative installation costs of the system will be relatively low compared to traditional installations of PV in high-rise buildings. This paper examined possibility of BIPV system of cold facade type and analyzed of performance of BIPV system of cold facade type. The system is influenced by conditions such as irradiation, module temperature, shade and architectural component etc. If this BIPV system of 1.1kW is possible the natural ventilation in the summer case, the temperature of PV module decrease and then the efficiency of PV system increase generally. By the results, the annual averaged PR of BIPV system of cold facade type is about 73.1%.

  • PDF

건물 적용을 위한 태양열 집열기 기능을 갖는 BIPV 시스템의 기초적 연구 (A Fundamental Study of BIPV System Functioned as Solar Collector for Building Application)

  • 민성혜;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제27권1호
    • /
    • pp.91-98
    • /
    • 2007
  • Perimeter zone is one of the weakest area in buildings and it makes an increase of heating and cooling loads, in addition to condensation or discomfort with cold-draft to residents in winter. Because of this, it needs to be reinforced by active systems. However, they use fossil fuel, and ultimately greenhouse effect is urged. Thus, we proposed BIPV system functioned as solar collector which can substitute active system. As an fundamental stage, heat balance equation in steady-state by Fortran was used not only, in winter for pre-heating effect and electric power capacity during the day, but also in summer, for the latter during the day and sky radiation effect during the night. Especially, we should have considered shading on PV by IES Suncast, since even a little bit of it makes the efficiency too low for the PV modules to work. As a result, in summer day, the PV panel should be tiled in 70 degrees to gain the most electric power. Moreover, we could verify that this model makes higher temperature and heat flux under 0.02 m/s. On the other hand, the PV had the high efficiency with high velocity because of cooling effect behind the PV. Therefore, we should regard the air current distribution later on.

비정질 실리콘 투과형 태양전지를 적용한 BIPV 시스템 발전 성능에 관한 사례 연구 (A Case Study on the Power Performance Characteristics of Building Integrated PV System with Amorphous Silicon Transparent Solar Cells)

  • 정선미;송종화;이성진;윤종호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.49-52
    • /
    • 2009
  • Practical building integrated photovoltaic system built by Kolon E&C has been monitored and evaluated with respect to power generation, which was installed in Deokpyeong Eco Service Area in Deokpyeong, Gyeonggi, Korea. The amorphous silicon transparent PV module in this BIPV system has 44Wp in power output per unit module and 10% of transmittance with the unit dimension with $980mm{\times}950mm$. The BIPV system was applied as the skylight in the main entrance of the building. This study provided the database for the practical application of the transparent thin-film PV module for BIPV system through 11 month monitoring as well as various statistical analyses such as monthly power output and insolation. Average monthly power output of the system was 52.9kWh/kWp/month which is a 60% of power output of the previously reported data obtained under $30^{\circ}$of an inclined PV module facing south(azimuth=0). This lower power output can be explained by the installation condition of the building facing east, west and south, which was resulted from the influence of azimuth.

  • PDF

30kW PVIB의 설계 및 구동특성에 관한 연구 (A Study for Design and Operational Features of Grid-Connected 30kW PVIB)

  • 박세준;윤정필;최홍준;신영식;차인수;김동묵;임중열
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.80-85
    • /
    • 2008
  • A PVIB(Photovoltaic in Building) system is united by a constituent outer covering and can expect dual effects that reduce expenses for the establishment of a PV system. It is a profitable technology because it does not need a building as it is a stand alone PV system. This paper presents design, operational features analysis, and PCS(Power Conditioning System) of grid-connected 30kW PVIB set up on the library of Dongshin University. For a sustainable photovoltaic system in this area, the data of the PVIB system are collected and analyzed by monitoring system using LabView. PCS of the grid-connected PVIB system, also, is designed for optimal operation with characteristics suggested in this paper.

  • PDF

사무공간 적용 BIPV시스템의 자연채광 및 성능평가에 관한 연구 (A Study on Evaluation of Daylighting in Office Space Applied BIPV Systems in Accordance with Power Performance)

  • 서영석;오민석;김회서
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.148-154
    • /
    • 2009
  • By the skyscraper building, increase of skin area and expansion of curtain wall system will be the important factors of acceleration in extending supply of BIPV system. In the future interior environmental evaluation is not a necessary to the residents but an essential term which will bring enormous influence. In the interior environmental evaluation, natural light will let the residents with direct contact with outside circumstances and make them feel opened. also only the daylight has radiant energy and color rendering that will have a great influence to residents' mental, operation efficiency and advancing productivity. This research compares and analyzes BIPC system in office spaces with two general sunlight's module. In addition to natural light's efficiency for BIPC system's comfort and confirmed economical efficiency will be applied to basic research data. Hence forth, ensuring indoor intensity of illumination and controlling light system to reducing energy research data will be demanded to increase the amount of supplying BIPC system. Also continuance research in the possibility of applying BIPC system in various buildings, room temperature affected by location of windows and its condensation, and economical evaluation will be required.

  • PDF

공동주택의 지붕용 BIPV시스템 성능 분석 연구 (A Study Analysis on Roof BIPV System Performance of the Apartment Building)

  • 김승범;박정로;김주형;김재준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 춘계 학술논문 발표대회
    • /
    • pp.127-128
    • /
    • 2012
  • Exhaustion of fossil fuels and continued high oil prices, global warming, climate change and to respond to the development and use of alternative energy technologies is expanding rapidly throughout the world. Recently, character of domestic building is appearing by along with economic growth, high-rise, large size, congestion. For this reason, the amount of electrical energy used in a building is increasing. In this study, the applicability of PV modules that are used as roofing and efficiency analysis, and more from the building of BIPV modules built using the activation of alternative energy sources in Korea are aimed want done.

  • PDF

공동주택을 위한 PV 시스템 적용기법 개발 연구 (A Study on the Development of PV Application for Apartment Buildings)

  • 노지희;윤철;이소미;주만식
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.269-274
    • /
    • 2008
  • Nowaday, The Sustainable Development about global environment is the most important subject. In urban environment, a variety of the nature energy utilization such as the solar energy are the most efficient solution to solve this issue. One of these efficient, solutions, a photovoltaic system using sunlight has been introduced to the building with an advantage such as cost-effective, safe for using and good for environment friendly in light with energy utilization. Recently, many of the apartment housings are built in domestic country. The apartment buildings have been constructed since early of 1970's. now apartment is taking over 50% out of entire housing in korea. The apartment housing applying to a photovoltaic system has been extensively studied in the foreign country but our county runs short. So, It was necessary to technical development of PV application which is suitable in Korean house culture. The objective of this study is to develop the building integrated PV application method for apartment building.

  • PDF

TRNSYS를 이용한 지역별 고정형 태양광모듈 배치안 검토 (A Study on the Optimum Selection of Placing Photovoltaic Module In the Metropolitan City Using a TRNSYS)

  • 박성현;서장후
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.297-302
    • /
    • 2011
  • In this study, used Trnsys and will apply metropolitan city distinguishes, fixations and BIPV systems the photovoltaic module arrangement environment which receives solar radiation quantity plentifully from the case design process which and most the outcome value simulation did analyzed. The climate data uses each metropolitan city distinguishes 20 average weather data, With measured values of horizontal solar radiation. The error scope appeared with 0.1%~6.7%. Variable of module arrangement Azimuth and angle of inclination of module and comparison group Module on due south direction angle of inclination $45^{\circ}$ day time set with the yearly average solar radiation quantity which receives. The result When the case comparison group which arranges a solar storehouse module with optimum environment and comparing until the minimum 1.4% - maximum 10.9% the solar radiation quantity difference appears with the thing, metropolitan city distinguishes considers the case solar radiation quantity which will arrange a photovoltaic module and that must establish with optimum environment judges.

  • PDF

철도 방음벽의 형상에 따른 태양복사 에너지 흡수 특성 연구 (Effect of Railway Noise Barrier Shape on Solar Radiation Energy Absorption)

  • 정찬호;이진운;장용준;김주헌;유홍선;이성혁
    • 한국분무공학회지
    • /
    • 제18권4호
    • /
    • pp.209-214
    • /
    • 2013
  • The present study aims to determine the optimized shape for the maximum electric energy production of building integrated photovoltaic system (BIPV) noise barrier through numerical analysis. The shape of BIPV noise barrier is one of the important factors in determining angle difference between direction vector of the sun and normal vector of the sound barrier surface. This study simulated numerically the flow and thermal fields for different angles in the range from $90^{\circ}$ to $180^{\circ}$, and from the results, the amount of isolation onto noise barrier surface was estimated along the angle between ground and top side of noise barrier. The commercial CFD code (Fluent V. 13.0) was used for calculation. It was found that the maximum amount of insolation per unit area was 19.6 MJ for $105^{\circ}$ case during a day in summer and was estimated 12.4 MJ in $150^{\circ}$ case during a day in winter. The results of the summer and winter cases showed the different tendency and this result would be useful in determining the appropriate shape of noise barrier which can be mounted under various circumstances.

초고층빌딩의 BIPV 적용성 검토를 위한 선진 사례 조사 (The Advanced Case Study for Investigation on Application of BIPV on Tall Building)

  • 이종민;석호태;양정훈
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.155-160
    • /
    • 2009
  • The increasingly high prices for oil, the exhaustion of fossil fuels as well as concern about global warming are driving rapid growth of alternative sources of energy in the world. The active solution for global environment and exhaustion of energy sources is to develop and popularize the technologies to use natural energy such as sunlight, wind, and water. PV(Photovoltaic) modules are efficient devices that has been considered a logical material for use in buildings. Recent advanced BIPV(Building Integrated PV) technology have rapidly made PVs suitable for direct integration into construction in the world. Recently, building has been higher and higher. Tall buildings have many advantages for BIPV such as wide facade area and no shading effect by the surrounding buildings. However. BIPV has not been applied for tall building facade yet. Therefore, the purpose of the research is to develop suitable BIPV for tall buildings and to put these technologies to practical use. Therefore, the purpose of the study is to investigate unification of BIPV to curtain wall to apply BIPV on tall building through research into advanced application of overseas BIPV cases.

  • PDF