• Title/Summary/Keyword: 건물에너지 소비량

Search Result 80, Processing Time 0.024 seconds

Measurement and Analysis of Energy Consumption of HVAC Equipment of a Research Building (연구용 건물의 열원 및 공조기기의 에너지 소비량 측정 및 분석)

  • Kim Seong-Sil;Kim Youngil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.914-922
    • /
    • 2004
  • In this study, measurement and analysis of energy consumption of a research building have been conducted. The energy audit procedure includes monitoring of electricity and LNG consumption over a period of three yews from 2000 to 2002. Data acquisition system for collecting energy consumption data of HVAC equipment such as chillers, fan filter units, AHUs, cooling towers, boilers, pumps, fan coil units, air compressors and etc. has been installed in a building located in Seoul. Data collected at an interval of 1 minute are analyzed for studying the energy consumption pattern of a research building. Percentage of energy consumption of all HVAC equipment is $51.0\%$ in 2000, $55.4\%$ in 2001, and $62.3\%$ in 2002, respectively. Electricity consumption of chillers accounts for $17.6\%$ of the total energy consumption, which is the largest. Annual energy consumption-rate per unit area is $840.5Mcal/m^2{\cdot}y$ in 2000, $1,064.8Mcal/m^2{\cdot}y$ in 2001, and $1,393.0Mcal/m^2{\cdot}y$ year 2002, respectively.

A Study on the Reduction of Building Energy Consumption and Generation of BIPV System According to the Increase of the Number of Floors in Office Building (사무소건물 층수 증가에 따른 BIPV 발전량과 건물에너지소비량 저감에 관한 연구)

  • Oh, Myung-Hwan;Yoon, Jong-Ho;Shin, Woo-Cheol
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.36-41
    • /
    • 2011
  • BIPV system that can alternate building envelope by making materials of PV module should be considered in initial design step for applying PV system efficiently in office building. Mean while, area of the building skin also increases as the number of floors increases, but the valid area that can apply BIPV system in effect decreases relatively. Despite of this weak point, installing BIPV system is still being evaluated as the only measure left that can reduce electronic energy consumption in the building. Therefore, the impact on building energy consumption according to the increase of the number of floors when BIPV system is applied in the building was analyzed. And it will be used as basic information for application of BIPV in office building. Conomic about application of BIPV is interpreted to be secured within the 10 story high. Forover the 11 floors, the methods of increasing the contribution ratio produced by BIPV system through the optimization of install angle and increase in install area of south, high efficiency should be considered. The ways to reduce basic load by integrated design with another renewable energy besides BIPV should be found. Later, the study on the total building energy comsumption with PV generation according to the various type of the basic load and ratio of the width and depth will be performed based on this study.

  • PDF

Experimental Study on Optimal Operation Strategies for Energy Saving in Building Central Cooling System (건물 중앙냉방시스템의 에너지절감을 위한 최적운전 방안에 관한 실험적 연구)

  • Hwang, Jin-Won;Ahn, Byung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4610-4615
    • /
    • 2013
  • In this study, optimal operation strategies to save the electric energy and power price in the building central cooling system is researched by experiments. The optimal strategies of demand response control and outdoor temperature reset control algorithms are applied by consideration the electric energy and power price according to the energy consumption characteristics. The suggested optimal control method shows better responses in the power price and energy consumption in comparison with the conventional one and saves energy consumption by 9.5% and electronic price by 15.7%, respectively.

Analysis of Energy Saving according to Control Method of Lighting Control System using Daylight (자연광을 이용한 조명제어시스템의 제어방법에 따른 에너지 절감률 분석)

  • Moon, Seung-Mi;Kwon, Sook-Youn;Im, Kyoung-Mi;Lim, Jae-Hyun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.462-464
    • /
    • 2012
  • 최근 건물 내 에너지 소비량의 30%를 점유하고 있는 조명 에너지 절감을 위해 자연광을 이용하여 인공조명의 의존도를 낮추고 에너지 사용을 최소화하기 위한 다양한 연구가 진행되고 있다. 이에 본 논문에서는 조명 에너지 소비 절감 및 재실자의 작업 능률 향상을 위해 조명시뮬레이션 소프트웨어인 Relux를 이용하여 소규모 사무 공간을 3D로 모델링하고, 이를 기준으로 시간대별 자연광의 유입량에 따라 조명장치를 점멸제어, 조광제어, 스텝제어의 다양한 제어방법을 적용하여 반복적인 시뮬레이션 과정을 통해 각 제어방법에 따른 에너지 절감률을 비교 및 분석하였다. 분석 결과 조광제어가 60.5%로 가장 높은 에너지 절감률을 보였다.

A Study on the Review Method of Zero Energy Independence Rate in Building Applied with BIM-based BIPV (BIM기반 BIPV 적용 건축물의 제로에너지 자립률 검토 방법에 관한 연구)

  • Choi, Kyu-Hyeok;Jeon, Hyun-Woo;Park, Kyung-Do
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.277-287
    • /
    • 2022
  • ZEB is a building that increases the energy independence of the building itself, and new and renewable elements that can produce energy are essential, and BIPV is the most notable technology. In ZEB's design, BIPV should be planned early in the design, but BIPV plans are insufficient in the early stages. Therefore, this study derived elements for theoretical consideration of BIM and ZEB and analysis of ZEB independence rate based on BIM, a convergence design technology, and analyzed BIPV energy production and building energy consumption. Finally, by calculating the energy independence rate and reviewing the rating criteria in the project model, a basic research method for calculating the energy independence rate of ZEB at the beginning of the design was presented. Through this, it is expected that design productivity can be improved by supporting the decision of ZEB subjects.

A Basic Study for Sustainable Analysis and Evaluation of Energy Environment in Buildings : Focusing on Energy Environment Historical Data of Residential Buildings (빌딩의 지속가능 에너지환경 분석 및 평가를 위한 기초 연구 : 주거용 건물의 에너지환경 실적정보를 중심으로)

  • Lee, Goon-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.262-268
    • /
    • 2017
  • The energy consumption of buildings is approximately 20.5% of the total energy consumption, and the interest in energy efficiency and low consumption of the building is increasing. Several studies have performed energy analysis and evaluation. Energy analysis and evaluation are effective when applied in the initial design phase. In the initial design phase, however, the energy performance is evaluated using general level information, such as glazing area and surface area. Therefore, the evaluation results of the detailed design stage, which is based on the drawings, including detailed information of the materials and facilities, will be different. Thus far, most studies have reported the analysis and evaluation at the detailed design stage, where detailed information about the materials installed in the building becomes clear. Therefore, it is possible to improve the accuracy of the energy environment analysis if the energy environment information generated during the life cycle of the building can be established and accurate information can be provided in the analysis at the initial design stage using a probability / statistical method. On the other hand, historical data on energy use has not been established in Korea. Therefore, this study performed energy environment analysis to construct the energy environment historical data. As a result of the research, information classification system, information model, and service model for acquiring and providing energy environment information that can be used for building lifecycle information of buildings are presented and used as the basic data. The results can be utilized in the historical data management system so that the reliability of analysis can be improved by supplementing the input information at the initial design stage. If the historical data is stacked, it can be used as learning data in methods, such as probability / statistics or artificial intelligence for energy environment analysis in the initial design stage.

Analysis of Indoor Thermal Environment and Energy Consumption in Office Building Controlled by PMV (PMV 제어에 따른 사무소 건물의 실내열환경과 에너지소비량 분석)

  • Jang, Hyang-In;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.15-22
    • /
    • 2013
  • The purpose of this study is to analyse the effects of air conditioned room controlled by PMV(Predicted Mean Vote)for energy consumption and human comfort in office building. The 'EnergyPlus' was used for the evaluation of indoor thermal environment and energy consumption by the controls of room temperature and PMV. The result indicates that the PMV control could prove more profitable method for improvement of indoor thermal environment and energy conservation. Consequently, PMV control has a distinct advantage over most other control methods. An additional study is required to establish the various thermal comfort control for rooms on the basis of this work.

클린룸과 실험실이 있는 사무용 건물의 에너지 소비 실태 측정 및 분석

  • 김성실;양시선;김영일;김석현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.966-973
    • /
    • 2001
  • In this study, measurement and analysis of energy consumption of an office building with cleanroom and laboratory have been conducted. Data acquisition system for collecting energy consumption data of the whole building including air-conditioning equipments has been installed in a building located in Seoul. Data are collected for a period of one year in 2000 and analyzed for studying the energy consumption pattern. The percentage of electrical energy used for air-conditioning system is measured to be 46.1%. The collected data will serve as valuable information for diagnosing and improving the energy system of the building.

  • PDF

Study on the Thermal Characteristics of Concrete Using Micro Form Admixture (마이크로기포제를 사용한 콘크리트의 열적 특성에 관한 연구)

  • Park, Young Shin;Kim, Jung Ho;Jeon, Hyun Kyu;Seo, Chee Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2013
  • Recently, it is certain that the increase of heating and cooling energy consumption by radical change in climate condition has caused serious problems related to environmental and energy concerns associated with increase of fossil fuel usage and carbon dioxide production as well as global warming. So, various actions to reduce greenhouse gas exhaustion and energy consumption have been prepared by world developed countries. Our government has also been trying to seek energy control methods for houses and buildings by proclaiming political polices on low-carbon green growth and construction and performance standards for environment-friendly housing. The energy consumption by buildings approximately reaches 25% of total korea energy consumption, and the increasing rate of energy consumption by buildings is stiffer than the rate by the other industries. The greatest part in the buildings of the energy consumption is building facade. While lots of research projects for reducing energy consumption of the facade have been conducted, but a few research projects on concrete comprising more than 70% of outsider of buildings has been tried. This research presents here a study to improve the insulation property of structural concrete formed by micro form admixture (MFA) with experimentally reviewing the physical, mechanical and thermal characteristics of the concrete. As the results of this experiment, in the case of concrete mixed with MFA, slump loss has been improved. As the mixing ratio of MFA increases, the compressive strength is decreased and thermal conductivity is increased. Also it was found that water-cement ratio increases, the compressive strength is decreased and thermal conductivity is increased. but, there was not big influence by the change of fine aggregate ratio.