• Title/Summary/Keyword: 거리 추정

Search Result 1,611, Processing Time 0.026 seconds

Precise Relative Positioning for Formation Flying Satellite using GPS Carrier-phase Measurements (GPS 반송파 위상을 사용한 편대비행위성 상대위치결정 연구)

  • Park, Jae-Ik;Lee, Eunsung;Heo, Moon-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1032-1039
    • /
    • 2012
  • The present paper deals with precise relative positioning of formation satellites with long baseline in low Earth orbit making use of L1/L2 dual frequency GPS carrier phase measurements. Kinematic approach means to describe the motion of objects without taking its mass/dynamics model into consideration. The advantage of the kinematic approach is that information about dynamics of the system is not applied, which gives more flexibility and could improve the scientific interest of the observations made by the mission. The ionosphere terms, which are not canceled by double differenced measurement equation in the case of the long baseline, are explicitly estimated as unknown parameters by extended Kalman filter. The estimated float ambiguities by EKF are solved by existing efficient integer vector search strategy under integer least square condition. For the integer vector search, we employ well known MLAMBDA. Finally, The feasibility and accuracy of processing scheme are demonstrated using the GPS measurements for two satellites in low Earth orbit separated by baselines of 100 km.

A Vanishing Point Detection Method Based on the Empirical Weighting of the Lines of Artificial Structures (인공 구조물 내 직선을 찾기 위한 경험적 가중치를 이용한 소실점 검출 기법)

  • Kim, Hang-Tae;Song, Wonseok;Choi, Hyuk;Kim, Taejeong
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.642-651
    • /
    • 2015
  • A vanishing point is a point where parallel lines converge, and they become evident when a camera's lenses are used to project 3D space onto a 2D image plane. Vanishing point detection is the use of the information contained within an image to detect the vanishing point, and can be utilized to infer the relative distance between certain points in the image or for understanding the geometry of a 3D scene. Since parallel lines generally exist for the artificial structures within images, line-detection-based vanishing point-detection techniques aim to find the point where the parallel lines of artificial structures converge. To detect parallel lines in an image, we detect edge pixels through edge detection and then find the lines by using the Hough transform. However, the various textures and noise in an image can hamper the line-detection process so that not all of the lines converging toward the vanishing point are obvious. To overcome this difficulty, it is necessary to assign a different weight to each line according to the degree of possibility that the line passes through the vanishing point. While previous research studies assigned equal weight or adopted a simple weighting calculation, in this paper, we are proposing a new method of assigning weights to lines after noticing that the lines that pass through vanishing points typically belong to artificial structures. Experimental results show that our proposed method reduces the vanishing point-estimation error rate by 65% when compared to existing methods.

A Study of Consequence Analysis of Physical Explosion Damage in CO2 Storage Tank (CO2 임시 저장 탱크에서의 물리적 폭발에 따른 피해영향 고찰)

  • Seo, Doo-Hyoun;Jang, Kap-Man;Lee, Jin-Han;Rhie, Kwang-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.12-19
    • /
    • 2015
  • $CO_2$ is non-flammable, non-toxic gas and not cause of chemical explosion. However, various impurities and some oxides can be included in the captured $CO_2$ inevitably. While the $CO_2$ gas was temporarily stored, the pressure in a storage tank would be reached above 100bar. Therefore, the tank could occur a physical explosion due to the corrosion of vessel or uncertainty. Evaluating the intensity of explosion can be calculated by the TNT equivalent method generally used. To describe the physical explosion, it is assumed that the capacity of a $CO_2$ temporary container is about 100 tons. In this work, physical explosion damage in a $CO_2$ storage tank is estimated by using the Hopkinson's scaling law and the injury effect of human body caused by the explosion is assessed by the probit model.

Simulation for the Estimation of Design Parameters in an Aquifer Thermal Energy Storage (ATES) Utilization System Model (대수층 축열 에너지(ATES) 활용 시스템 모델의 설계인자 추정을 위한 시뮬레이션)

  • Shim Byoung-Ohan
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.54-61
    • /
    • 2005
  • An aquifer thermal energy storage (ATES) system can be very cost-effective and renewable energy sources, depending on site-specific parameters and load characteristics. In order to develop the ATES system which has certain hydrogeological characteristics, understanding the thermohydraulic process of an aquifer is necessary for a proper design of an aquifer heat storage system under given conditions. The thermohydraulic transfer for heat storage was simulated according to two sets of simple pumping and waste water reinjection scenarios of groundwater heat pump system operation in a two-layered aquifer model. In the first set of the scenarios, the movement of the thermal front and groundwater level was simulated by changing the locations of injection and pumping wells in a seasonal cycle. However, in the second set the simulation was performed in the state of fixing the locations of pumping and injection wells. After 365 days simulation period, the shape of temperature distribution was highly dependent on the injected water temperature and the distance from the injection well. A small temperature change appeared on the surface compared to other simulated temperature distributions of 30 and 50 m depths. The porosity and groundwater flow characteristics of each layer sensitively affected the heat transfer. The groundwater levels and temperature changes in injection and pumping wells were monitored and the thermal interference between the wells was analyzed to test the effectiveness of the heat pump operation method applied.

Study on applicability of fractal theory to cohesive sediment in small rivers (프랙탈 이론의 소하천 점착성 유사 적용에 관한 연구)

  • Lim, Byung Gu;Son, Minwoo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.887-901
    • /
    • 2016
  • Cohesive sediments form flocs through the flocculation process. The size and density of floc are variable whereas those of a fine sediment are always assumed to be constant. The settling velocity, one of main factors of sediment transport, is determined by size and density of particle. Therefore, the flocculation process plays an important role in transport of cohesive sediment. It is of great difficulty to directly measure the density of floc in the field due to technical limitation at present. It is a popular approach to estimate the density of floc by applying the fractal theory. The main assumption of fractal theory is the self-similarity. This study aims to examine the applicability of fractal theory to cohesive sediment in small rivers of Korea. Sampling sediment has been conducted in two different basins of Geum river and Yeongsan river. The results of settling experiments using commercial camera show that the sediment in Geum river basin follows the main concept of fractal theory whereas the sediment in Yeongsan river basin does not have a clear relationship between floc size and fractal dimension. It is known from this finding that the fractal theory is not easily applicable under the condition that the cohesive sediment includes the high content of organic matter.

Analysis of Hydraulic Gradient at Coastal Aquifers in Eastern Part of Jeju Island (제주도 동부지역 해안대수층의 조석에 의한 수리경사 변화 연구)

  • Kim, Kue-Young;Shim, Byoung-Ohan;Park, Ki-Hwa;Kim, Tae-Hee;Seong, Hyeon-Jeong;Park, Yun-Seok;Koh, Gi-Won;Woo, Nam-Chil
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.79-89
    • /
    • 2005
  • Groundwater level changes in coastal aquifers occur due to oceanic tides, where the properties of oceanic tides can be applied to estimate hyadraulic parameters. Hydraulic parameters of coastal aquifers located in eastern part of Jeju island were estimated using the tidal response technique. Groundwater level data from a saltwater intrusion monitoring well system was used which showed tidal effects from 3 to 5 km. The hydraulic gradient was assessed by utilizing the filtering method from 71 consecutive hourly water-level observations. Calculated hydraulic diffusivity ranged from 2.94${\times}10^7m^2d^{-1}$ to 4.36${\times}10^7m^2d^{-1}$ . The hydraulic gradient of the coastal aquifer area was found to be ~$10^{-4}$, whereas the gradient of the area between wells Handong-1 and 2 was found to be ~$10^{-6}$, which is very low comparatively. Analysis of groundwater monitoring data showed that groundwater levels are periodically higher near coastal areas compared to that of inner land areas due to oceanic tide influences. When assessing groundwater flow direction in coastal aquifers it is important to consider tidal fluctuation.

Development $K_d({\lambda})$ and Visibility Algorithm for Ocean Color Sensor Around the Central Coasts of the Yellow Sea (황해 중부 연안 해역에서의 해색센서용 하향 확산 감쇠계수 및 수중시계 추정 알고리즘 개발)

  • Min, Jee-Eun;Ahn, Yu-Hwan;Lee, Kyu-Sung;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.311-321
    • /
    • 2007
  • The diffuse attenuation coefficient for down-welling irradiance $K_d({\lambda})$, which is the propagation of down-welling irradiance at wavelength ${\lambda}$ from surface to a depth (z) in the ocean, and underwater visibility are important optical parameters for ocean studies. There have been several studies on $K_d({\lambda})$ and underwater visibility around the world, but only a few studies have focused on these properties in the Korean sea. Therefore, in the present study, we studied $K_d({\lambda})$ and underwater visibility around the coastal area of the Yellow Sea, and developed $K_d({\lambda})$ and underwater visibility algorithms for ocean color satellite sensor. For this research we conducted a field campaign around the Yellow Sea from $19{\sim}22$ September, 2006 and there we obtained a set of ocean optical and environmental data. From these datasets the $K_d({\lambda})$ and underwater visibility algorithms were empirically derived and compared with the existing NASA SeaWiFS $K_d({\lambda})$ algorithm and NRL (Naval Research Laboratory) underwater visibility algorithm. Such comparisons over a turbid area showed small difference in the $K_d({\lambda})$ algorithm and constants of our result for underwater visibility algorithm showed slightly higher values.

SAR Image Impulse Response Analysis in Real Clutter Background (실제 클러터 배경에서 SAR 영상 임펄스 응답 특성 분석)

  • Jung, Chul-Ho;Jung, Jae-Hoon;Oh, Tae-Bong;Kwang, Young-Kil
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.99-106
    • /
    • 2008
  • A synthetic aperture radar (SAR) system is of great interest in many fields of civil and military applications because of all-weather and luminance free imaging capability. SAR image quality parameters such as spatial resolution, peak to sidelobe ratio (PSLR), and integrated sidelobe ratio (ISLR) can be normally estimated by modeling of impulse response function (IRF) which is obtained from various system design parameters such as altitude, operational frequency, PRF, etc. In modeling of IRF, however, background clutter environment surrounding the IRF is generally neglected. In this paper, analysis method for SAR mage quality is proposed in the real background clutter environment. First of all, SAR raw data of a point scatterer is generated based on various system parameters. Secondly, the generated raw data can be focused to ideal IRF by range Doppler algorithm (RDA). Finally, background clutter obtained from image of currently operating SAR system is applied to IRF. In addition, image quality is precisely analyzed by zooming and interpolation method for effective extraction of IRF, and then the effect of proposed methodology is presented with several simulation results under the assumption of estimation error of Doppler rate.

Evaluation on Fire Available Safe Egress Time of Commercial Buildings based on Artificial Neural Network (인공신경망 기반 상업용 건축물의 화재 피난허용시간 평가)

  • Darkhanbat, Khaliunaa;Heo, Inwook;Choi, Seung-Ho;Kim, Jae-Hyun;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.111-120
    • /
    • 2021
  • When a fire occurs in a commercial building, the evacuation route is complicated and the direction of smoke and flame is similar to that of the egress route of occupants, resulting in many casualties. Performance-based evacuation design for buildings is essential to minimize human casualties. In order to apply the performance-based evacuation design to buildings, it requires a complex fire simulation for each building, demanding a large amount of time and manpower. In order to supplement this, it would be very useful to develop an Available Safe Egress Time (ASET) prediction model that can rationally derive the ASET without performing a fire simulation. In this study, the correlations between fire temperature with visibility and toxic gas concentration were investigated through a fire simulation on a commercial building, from which databases for the training of artificial neural networks (ANN) were created. Based on this, an ANN model that can predict the available safe egress time was developed. In order to examine whether the proposed ANN model can be applied to other commercial buildings, it was applied to another commercial building, and the proposed model was found to estimate the available safe egress time of the commercial building very accurately.

Analysis of the Correlation between Social Factors and the Use of Hydrophilic Facilities by Age Group - Case Study at the Samrak and Daejeo Ecological Park (사회적 요인 및 연령대별 친수공원 이용에 관한 상관관계 분석 - 삼락과 대저생태공원을 대상으로)

  • Choi, In-Ho;Lee, Min-Young;Yoon, Hee-Ra;Kim, Seong Jun;Kim, Chang Sung
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.273-280
    • /
    • 2021
  • In the past, the government made a total of 357 hydrophilic districts into parks to create rest areas in the national river with the four major river projects. According to the results of the survey, 60 water-friendly districts with low utilization were lifted in January 2017, and 297 water-friendly districts are currently being managed. Local governments are in charge of the maintenance costs necessary to maintain these hydrophilic districts, which require considerable costs, so it is necessary to accurately grasp the characteristics and needs of local residents at the operation stage after designation. In this study, the characteristics of local residents in the hydrophilic district were analyzed by correlating social factors with river users, crawling social network data to analyze visit patterns, and derived related Keywords, and analyzed the characteristics of the hydrophilic district. The study target areas are Samrak and Daejeo Ecological Park, located downstream of the Nakdonggang River. Social factors analyzed real estate transaction price data, economic activity income, households, stress perception rate, and pet breeding status through public data provided by Statistics Korea, and analyzed user visit patterns and image keywords on weekends.