• Title/Summary/Keyword: 거리측정 시스템

Search Result 1,205, Processing Time 0.028 seconds

A Semantic Distance Measurement Model using Weights on the LOD Graph in an LOD-based Recommender System (LOD-기반 추천 시스템에서 LOD 그래프에 가중치를 사용한 의미 거리 측정 모델)

  • Huh, Wonwhoi
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.53-60
    • /
    • 2021
  • LOD-based recommender systems usually leverage the data available within LOD datasets, such as DBpedia, in order to recommend items(movies, books, music) to the end users. These systems use a semantic similarity algorithm that calculates the degree of matching between pairs of Linked Data resources. In this paper, we proposed a new approach to measuring semantic distance in an LOD-based recommender system by assigning weights converted from user ratings to links in the LOD graph. The semantic distance measurement model proposed in this paper is based on a processing step in which a graph is personalized to a user through weight calculation and a method of applying these weights to LDSD. The Experimental results showed that the proposed method showed higher accuracy compared to other similar methods, and it contributed to the improvement of similarity by expanding the range of semantic distance measurement of the recommender system. As future work, we aim to analyze the impact on the model using different methods of LOD-based similarity measurement.

Three-dimensional relative-distance measurement by use of the phase-shifting digital holography (위상천이 디지털 홀로그래피를 이용한 3차원 상대 거리 측정)

  • Kim, Hyun;Lee, Yeon-H.
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.200-207
    • /
    • 2003
  • In this paper we present a new method of measuring the relative distance of two point objects in three-dimensional space by using phase-shifting digital holography. In our system the reference beam of a spherical wave is used instead of a plane wave. The system is computer simulated and built on an optical table for experiments. It is shown from computer simulations and experiments that the relative distance can be measured without the exact information on the reference beam used in the hologram record. It is shown from experiments that the relative distance between two point objects separated by 0.5 cm in the distance of about 300 cm from the CCD can be measured with an error less than 10%.

An Improved Phase Estimation Method for AM Range Measurement System (진폭 변조 거리 측정 시스템에 적용 가능한 개선된 위상 추정 기법)

  • Kim, Dae-Joong;Oh, Taek-Hwan;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6C
    • /
    • pp.453-461
    • /
    • 2012
  • This paper proposes an improved phase estimation method for AM(Amplitude Modulation) range measurement system. The previous phase estimation method induces errors by Doppler shift of a moving target. The proposed method compensates phase estimation error through the ADC(Adaptive Doppler Correction) to take the Doppler shift, thus can improve distance measurement accuracy. When compared with the previous method through simulation results, the Doppler shift compensation and accuracy are improved by 94.7% and 50%, respectively. Target distance error in an acoustic tank is estimated to be 7.7cm, which confirms that the proposed method can be used to estimate the distance in the marine environment.

Effective Range Evaluation of Wireless Monitoring System for Monopile (모노파일용 원거리 무선 모니터링 시스템의 유효거리 평가)

  • Park, Kiwon;Lee, Jong-Sub;Choi, Changho;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.91-100
    • /
    • 2012
  • Wireless monitoring system for the structural health evaluation has a limit to the reliability of measured response. The objective of this study is to evaluate an effective measurement range of the wireless monitoring system on the analyzed data. For the wireless monitoring system, Bluetooth and Wi-Fi are applied to datalogger-receiver and receiver-personal computer, respectively. For the model of the monopile structure response, a laboratory-scale monopile is manufactured with Mono Cast Nylon and a lateral loading is applied by hammer impacting. Strain gauges attached on the model monopile are connected with the datalogger. The distances of datalogger-receiver and receiver-personal computer are changed for the evaluation of the measurement range. Experimental results show that the receiving rates of the response remain almost constant within limited distance, while the receiving rates dramatically decrease out of effective range. In addition, the receiving rates affect on the measured natural frequencies of the model monopile. This study suggests that the effective range evaluation of the wireless monitoring system may be used for the determination of a monitoring distance to the monopile installed in the offshore wind farm.

The exercise-distance measuring system with high precision considering of altitude (고도를 고려한 정밀도 높은 운동거리 측정시스템)

  • Kim, Dae-Ho;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.615-625
    • /
    • 2012
  • To measure the athletic information of exercisers, the applications of smartphone are programmed based on the sensing data from GPS device. These applications provide exercisers for running or walking distance, exercising time, calorie consumption, average speed, and so on. Among them, the exercising distance should measure accurately because it directly affects the other athletic information for exercisers. However, the existing methods for measuring the exercising distance makes errors because they are worked on the simple sphere or ellipse earth models. Actually, the surface of real earth is composed of inclined ground like hills and valleys. In this paper, a new exercising distance measuring algorithm is proposed to compensate the errors of existing method. It considers the altitude of slopes in exercising routes. To evaluate exercising distance measuring algorithms, we implement the athletic life-guide system based on the smartphone platform. In experiments, the proposed method shows that it provides more accurate distance measurement.

Study of Target Pose Estimation System: Distance Measurement Based Deep Learning Using Single Camera (딥러닝 단일카메라 거리 측정 기술 활용 구조대상자 위치추정시스템 연구)

  • Do-Yun Kim;Jong-In Choi ;Seo-Won Park ;Kwang-Young Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.560-561
    • /
    • 2023
  • 지진, 대형화재와 같은 많은 재해의 발생으로 인해 재난 안전 분야에 관심이 증가하고 있으며, 재난재해 시 신속하고 안전한 구조는 생존율에 영향을 준다. 기존 연구에서는 다양한 센서와 멀티카메라를 이용한 위치 추정 연구는 있으나, 가장 많이 설치된 단일카메라 기반의 위치 추정연구는 부족한 상태이다. 본 논문에서 단일카메라를 활용한 딥러닝 객체탐지와 거리측정 알고리즘을 이용하여 인명구조를 위한 구조대상자 위치추정시스템을 제안한다. 딥러닝을 활용한 객체탐지 기술을 이용하여 단일카메라 영상 내 객체와 해상도에 따른 바운딩 박스의 너비를 활용한 거리 계산식으로 거리를 추정하고, 객체의 위치좌표를 제공하여 신속한 재난 구조에 도움이 되는 시스템을 제안한다.

Development of PSD Sensor Based Distance Measuring System for Intelligent Mobile Robot (지능형 이동로봇을 위한 PSD센서기반 거리계측 시스템의 개발)

  • Kim Yu-Chan;Ryoo Young-Jae;Chang Young-Hak;Song Jeong-Gon;Lee Ju-Sang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.225-228
    • /
    • 2005
  • 본 논문에서는 이동로봇의 저가형 위치인식센서로 적합한 PSD(Position Sensitive Detector)센서를 이용하여 거리계측시스템을 개발하였다. PSD 센서는 거리-전압 출력이 비선형적인 단점을 가지고 있어 센서의 특성실험을 통해 선형화가 가능한 변환함수를 제안하였다. 제안한 방법을 검증하기 위하여 거리계측시스템의 하드웨어 및 소프트웨어를 구성하였다. 또 피측정체의 색상 및 재질에 따른 출력특성을 실험하고 거리-전압 데이터를 측정하였다. 실측한 데이터를 바탕으로 제안한 선형화함수의 계수를 추출하였다. 마지막으로 제안한 함수에 의한 거리와 실제거리를 비교하여 시스템의 성능 및 정확성을 검증하였다.

  • PDF

Distance measurement System from detected objects within Kinect depth sensor's field of view and its applications (키넥트 깊이 측정 센서의 가시 범위 내 감지된 사물의 거리 측정 시스템과 그 응용분야)

  • Niyonsaba, Eric;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.279-282
    • /
    • 2017
  • Kinect depth sensor, a depth camera developed by Microsoft as a natural user interface for game appeared as a very useful tool in computer vision field. In this paper, due to kinect's depth sensor and its high frame rate, we developed a distance measurement system using Kinect camera to test it for unmanned vehicles which need vision systems to perceive the surrounding environment like human do in order to detect objects in their path. Therefore, kinect depth sensor is used to detect objects in its field of view and enhance the distance measurement system from objects to the vision sensor. Detected object is identified in accuracy way to determine if it is a real object or a pixel nose to reduce the processing time by ignoring pixels which are not a part of a real object. Using depth segmentation techniques along with Open CV library for image processing, we can identify present objects within Kinect camera's field of view and measure the distance from them to the sensor. Tests show promising results that this system can be used as well for autonomous vehicles equipped with low-cost range sensor, Kinect camera, for further processing depending on the application type when they reach a certain distance far from detected objects.

  • PDF

Preliminary Perfomances Anlaysis of 1.5-m Scale Multi-Purpose Laser Ranging System (1.5m급 다목적형 레이저 추적 시스템 예비 성능 분석)

  • Son, Seok-Hyeon;Lim, Jae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.771-780
    • /
    • 2021
  • The space Debris laser ranging system is called to be a definite type of satellite laser ranging system that measures the distance to satellites. It is a system that performs POD (Precise Orbit Determination) by measuring time of flight by firing a laser. Distance precision can be measured in mm-level units, and it is the most precise system among existing systems. Currently, KASI has built SLR in Sejong and Geochang, and utilized SLR data to verify the precise orbits of the STSAT-2C and KOMASAT-5. In recent years, due to the fall or collision of space debris, its satellites have been threatened, and in terms of security, laser tracking of space objects is receiving great interest in order to protect their own space assets and protect the safety of the people. In this paper, a 1.5m-class main mirror was applied for the system design of a multipurpose laser tracking system that considers satellite laser ranging and space object laser tracking. System preliminary performance analysis was performed based on Link Budget analysis considering specifications of major components.

Fundamental design studies of the temperature measurement system on wireless environment (무선 환경에서의 온도 측정 시스템 설계에 관한 기초 연구)

  • 차부상;정우철;류정탁;김연보
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2004.06a
    • /
    • pp.101-105
    • /
    • 2004
  • 본 논문에서는 온도 센서로부터 얻어지는 데이터를 전송하고 실시간으로 처리하기 위하여 RF방식을 이용한 단 방향 데이터 전송 시스템을 설계하고 그 특성을 측정하였다. 설계된 무선 전송기능의 온도 측정 시스템은 온도센서 및 제어부, 데이터 전송용 RF module로 구성되었다. 온도 측정을 위한 센서는 AD590 전류 구동 형 전압출력 센서이며 제어부는 PIC one-chip microprocessor를 사용하였다. 또한 데이터의 무선 전송을 위해 433MHz 주파수 대역의 반 이중 RF Module을 사용하여 system을 구현하였다. 실험은 10M 이내의 실내 공간 내에서 수행되었고, 임의의 온도측정 구간에 따른 온도 변화 환경에서 3가지 경우의 (3M,5M,10M) 거리 변화를 두고 데이터를 측정 및 비교 분석하였다. 실험결과 10M 이내의 거리에서는 온도센서로부터 얻어진 데이터를 실시간으로 송수신하여 결과를 처리할 수 있었으며 이를 이용한 다중 Sensor 시스템 구현이 가능한 결과를 얻었다.

  • PDF