• Title/Summary/Keyword: 거동예측

Search Result 2,604, Processing Time 0.027 seconds

Numerical Approach to Predict the Long Term Behavior of Tunnel Considering the Degradation of Tunnel Members (수치해석을 이용한 터널 부재의 열화로 인한 장기 거동 예측)

  • Hoki, Ban;Donggyou, Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.12
    • /
    • pp.33-39
    • /
    • 2022
  • This paper presents the long-term behavior of tunnel considering the degradation of concrete lining and surrounding soil. Tunnel is a composite structure which has supporting elements (shotcrete, lining, and rockbolt) and surrounding soils. These supporting elements and surrounding soils undergo the degradation as time goes. A proposed degradation function which has two parameters which control the residual strength and degradation shape was applied to the numerical analysis. The results showed the plastic zone was spread around tunnel due to the degradation leading to the increase in unstability of tunnel.

Practical Prediction of Creep, Shrinkage and Durability of Concrete In Japan (콘크리트 크리프, 수축 및 내구성에 대한 일본의 실무예측)

  • Kwon, Seung Hee;Kang, Su Tae
    • Magazine of the Korea Institute for Structural Maintenance and Inspection
    • /
    • v.16 no.1
    • /
    • pp.90-101
    • /
    • 2012
  • 최근 일본의 설계규정(설계기준 내 재료모델)은 전 세계에서 수집된 실험 결과들을 바탕으로 개발된 것으로, 세계 최고 수준의 예측 방법으로 알려져 있다. 그럼에도 불구하고 장기간 관측된 실제 교량의 처짐은 예측결과와 많은 차이를 나타내고 있다. 이 논문에서는 콘크리트의 시간의 존적 거동에 대한 일본 설계규정의 주요 변천 과정을 소개하고, 실제 장기거동과 예측결과가 큰 차이를 보이는 원인에 대한 논의가 이루어질 것이다. 또한 내구성이 높고 경제적인 콘크리트 구조물 건설을 위한 앞으로의 연구방향이 제시될 것이다.

  • PDF

Reliability Verification of Numerical Prediction Method on Pile Behaviour Characteristics using Field Static Loading Test (현장정재하시험을 이용한 말뚝 거동특성 수치해석 예측기법의 신뢰성 검증)

  • Nam, Hosung;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.9
    • /
    • pp.11-18
    • /
    • 2017
  • Numerical analysis method for prediction of pile behaviour characteristics has widely been used in detail design process before construction because field static loading test requires high cost. However, the reliability verification of numerical analysis of result is not permitted compare with field test. In this study, to verify the numerical analysis results, pile behaviour prediction was compared with field static loading test results. For exact analysis of interaction between pile and ground, soil investigation and in-situ test such as boring, SPT and bore-hole shear test were performed before pile static loading test. During the static loading test, pile behaviour characteristics were analyzed under every loading condition. After static pile loading test, numerical analysis was carried out under same condition with static pile loading test. In the numerical analysis, to apply same loading condition with each loading condition in the field test and to compare with between the results of numerical analysis, the field test results for reliability were verified with the results of numerical analysis.

Evaluation of the Prediction of B-RISK-FDS-Coupled Simulations for Multi-Combustible Fire Behavior in a Compartment (구획실 내 가연물들의 화재거동에 대한 B-RISK와 FDS 연계 화재 시뮬레이션 예측성능 평가)

  • Baek, Bitna;Oh, Chang Bo
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.50-58
    • /
    • 2019
  • The prediction performance of B-RISK was evaluated for the fire behaviors of combustibles in a compartment using Fire Dynamics Simulator (FDS). First of all, to predict the heat release rate (HRR) for two combustible sets, the HRR for one combustible set and the design fire curve were used as input values for B-RISK. Comparing results of B-RISK calculations with experimental data for two combustible sets, it was found that B-RISK results predicted insufficiently for fire growth rate of experimental data but there was good agreement for maximum HRR and total HRR with the experimental data. And the B-RISK results were used for input values of FDS to evaluate the fire behaviors of B-RISK results. Comparing results of FDS calculations with experimental data, the simulation results showed that the temperature and concentrations of O2, CO2 in the fire growth phase were different from the experimental data. However, when using the B-RISK result for percentile 70%, the simulation results sufficiently predicted the overall fire behaviors.

Development of Advanced Mechanical Analysis Models for the Bolted Connectors under Cyclic Loads (반복하중을 받는 볼트 연결부에 대한 역학적인 고등해석 모델의 개발)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.101-113
    • /
    • 2013
  • This paper intends to develop mechanical analysis models that are able to predict complete nonlinear behavior in the bolted connector subjected to cyclic loads. In addition, experimental data which were obtained from loading tests performed on the T-stub connections are utilized to validate the accuracy of analytical prediction and the adequacy of numerical modeling. The behavior of connection components including tension bolt uplift, bending of the T-stub flange, stem elongation, relative slip deformation, and bolt bearing are simulated by the multi-linear stiffness models obtained from the observation of their individual force-deformation mechanisms in the connection. The component springs, which involve the stiffness properties, are implemented into the simplified joint element in order to numerically generate the behavior of full-scale connections with considerable accuracy. The analytical model predictions are evaluated against the experimental tests in terms of stiffness, strength, and deformation. Finally, it can be concluded that the mechanical models proposed in this study have the satisfactory potential to estimate stiffness response and strength capacity at failure.

The Characteristic for Undrainded Shear Behavior of in Low-Plastic Silt and its Prediction (저소성 실트의 비배수 전단거동 특성과 예측)

  • Kim, Daeman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.61-70
    • /
    • 2008
  • In this study, undrained triaxial (CU) tests were performed on low-plastic silt of Nakdong River in order to investigate the undrained shear behavior of low-plastic silt. In experimental results, the deviator stress showed the hardening behavior after reaching its yield stress like the tendency of common sand, and the pore water pressure was gradually decreased to critical state after the maximum value. In the effective stress paths, regardless of consolidation stress or overconsolidation ratios, both a critical state line (CSL) and a phase transformation line (PTL) exist in the effective stress path that is similar to the case of sand. The behavior of low-plastic silt was predicted by the Modified Cam-Clay (MCC) model, the Jordan and the Elman-jordan model that is artificial neural network model. According to predicted results, the overall undrained shear behavior of low-plastic silt could not be predicted with the MCC model, but the Jordan and Elman-Jordan model showed well-matched experiment results.

  • PDF

Realistic Prediction of Post-Cracking Behaviour in Synthetic Fiber Reinforced Concrete Beams (합성섬유보강 콘크리트 보의 균열 후 거동 예측)

  • 오병환;김지철;박대균;원종필
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.900-909
    • /
    • 2002
  • Fibers play a role to increase the tensile strength and cracking resistance of concrete structures. The post cracking behavior must be clarified to predict cracking resistance of fiber reinforced concrete. The purpose of this study is to develop a realistic analysis method for the post cracking behavior of synthetic fiber reinforced concrete members. For this purpose, the cracked section is assumed to behave as a rigid body and the pullout behavior of single fiber is employed. A probabilistic approach is used to calculate effective number of fibers across crack faces. The existing theory is compared with test data and shows good agreement. The proposed theory can be efficiently used to describe the load-deflection behavior, moment-curvature relation, load-crack width relation of synthetic fiber reinforced concrete beams.

Simplified Evaluation of Long-Term Deflection of Reinforced Concrete Flexural Members (철근콘크리트 휨재의 장기처짐 예측을 위한 간략 평가)

  • Chang, Dong-Woon;Kang, Jee-Hoon;Chae, Seung-Yoon;Kim, Jae-Yo;Eom, Tae-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.6-9
    • /
    • 2011
  • 지속하중을 받는 철근콘크리트 휨부재는 크리프, 건조수축 등 장기거동에 의하여 처짐이 증가된다. ACI318-08, KCI 2007 등 현행 구조설계기준의 장기처짐 평가방법은 인장 및 압축 철근비, 배근상세, 재료 강도 등 설계변수에 따른 장기처짐의 변화를 합리적으로 고려하기 어렵다. 본 연구에서는 장기거동에 의한 힘의 평형조건과 변형률 적합조건을 사용하여 크리프와 건조수축에 의한 철근콘크리트 균열단면의 장기변형을 예측하는 간략 평가식을 제안하였다. 장기변형 평가 시 콘크리트와 철근은 선형탄성거동을 가정하였고, 시간에 따른 콘크리트와 철근 사이의 응력재분배를 고려하기 위하여 재령보정탄성계수법을 적용하였다. 변수연구 및 검증 결과, 철근콘크리트 휨재의 장기처짐은 설계변수의 영향으로 달라질 수 있고, 제안된 방법은 이러한 장기처짐의 변화를 비교적 정확하게 예측하는 것으로 나타났다.

  • PDF

Analytical Prediction and Validation of Elastic Behavior of Carbon-Fiber-Reinforced Woven Composites (탄소섬유강화 직조복합재의 탄성 거동의 이론적 예측 및 검증)

  • Hwang, Yeon-Taek;Lim, Jae-Young;Nam, Byeung-Gun;Kim, Hak-Sung
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.276-281
    • /
    • 2018
  • In this paper, elastic behavior of woven fabric composites with various fiber yarn structure were predicted through a theoretical calculation model. A representative volume elements (RVE) that can represent the mechanical properties of the woven composites were selected and crimp angle of the weave yarn was defined by several sinusoidal functions. The effective material properties of the woven composite such as young's modulus, shear modulus and poisson's ratio was predicted by classical laminate theory (CLT). The fiber volume fractions were calculated according to the shape and pattern (plain, twill weave) of the fiber yarn, and the elastic behavior of each woven composite was obtained through a theoretical calculation model. Also, to verify the theoretical predictions, woven composite specimens of plain and twill weave were fabricated by vacuum assisted resin transfer molding (VARTM) process and then mechanical test was conducted. As a results, a good correlation between theoretical and experimental results for the elastic behavior of woven composites could be achieved.

Effects of Material Characteristics on the Time-dependant Behavior of Prestressed Concrete Box Girder Bridges Constructed by Free Cantilever Method (재료특성치의 변화에 따른 캔틸레버 공법 프리스트레스트 콘크리트 박스거더 교량의 장기거동 분석)

  • 오병환;양인환
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.1
    • /
    • pp.179-188
    • /
    • 1998
  • 캔틸레버 공법으로 시공되는 프리스트레스트 콘크리트 박스거더 교량의 구조적 거동은 단계적 시공에 따른 구조물의 순차적 변화 및 콘크리트의 재료적 특성에 의해 시간 의존적 거동을 나타낸다. 콘크리트의 시간의존적 특성, 즉 콘크리트의 크리프 및 건조수축 특성은 현장타설 세그멘탈 캔딜레버공법으로 가설되는 콘크리트 교량의 설계 및 시공에서 매우 중요한 역할을 한다. 본 연구에서는 콘크리트의 크리프 및 건조수축 특성이 교량의 시간의존적 거동, 특히 처짐 및 텐던응력예측에 미치는 영향을 연구하였다. 교량해석은 본 연구진에 의해 개발된 프리스트레스트 콘크리트 교량해석기법 및 프로그램을 이용하여 크리프의 ACI 모델, CEB-FIB모델, 그리고 국내 도로교 시방서 모델을 고려하여 해석하였다. 해석결과 최종크리프 값의 크기에 따라 장기처짐의 발생량이 차이가 큰 것으로 나타나고 있으며, 최종건조수축량과 상대습도도 영향을 주는 것으로 나타났다. 또한 ACI 모델과 CEB-FIB모델간에도 차이가 큰 것으로 나타나 실제교량의 크리프 특성 및 건조수축 특성의 정확한 예측이 교량의 정밀시공 및 거동예측에 매우 중요한 것으로 나타나고 있다.