• 제목/요약/키워드: 거동시험체

Search Result 614, Processing Time 0.023 seconds

Flexural Behavior of Glass Fiber Reinforced Plastic Pipes (유리섬유 강화 플라스틱관의 휨거동에 관한 연구)

  • 장동일;고재원
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.3
    • /
    • pp.187-194
    • /
    • 1993
  • 본 논문에서는 유리섬유의 적층수, 유리섬유의 배향각도에 대한 유리섬유 강화 플라스틱(Glass Fiber Reinforced Plastics ; GFRP)의 인장거동 변화를 고찰하고, 이들의 상관관계를 규명하기 위하여 일련의 GFRP 시험체에 대하여 인장실험을 수행하였다. 시험체는 폭12.5mm, 길이 60mm크기로 일정하게 제작하였으며, 시험체에 대하여 인장실험을 수행하였다. 시험체 제작시 유리섬유로 적층수는 14, 22, 30층, 유리섬유의 배향각도는 0$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$로 하였다. 인장실험시 각 시험체의 파괴양상, 극한하중 및 하중변화에 대한 인장변형율을 조사하였고, 이들 결과를 토대로 유리섬유의 적층수와 배향각도에 따른 GFRP의 극한하중, 응력-변형율 선도 및 탄성계수 등을 비교 분석하였다. 한편 본 논문에서는 유리섬유의 적층수, 직경 변화에 따른 GFRP관의 파괴거동을 고찰하기 위하여 4점 재하법에 의한 GFRP관의 휨파괴실험을 수행하였다. 실험에 사용된 시험체는 길이 1200mm로 하였으며, 유리섬유의 적층수를 30, 35, 40층, 관의 직경을 50, 100, 150mm로 하였다. 파괴실험시 각 시험체의 하중변화에 대한 휨 변형율, 중앙점 처짐량 및 항복하중을 측정하였고, 이들 결과를 토대로 유리섬유으 적층수와 관의 직경에 따라 GFRP관의 항복하중 및 파괴에너지를 비교 분석 하였으며, 항복시 파괴에너지를 추정할 수 있는 제안식을 유도하였다.

DUPIC 핵연료 조사시험 예비평가

  • 박희성;이철용;정인하;배기광;김학노;이기홍;박종만;강영환;양명승
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.250-255
    • /
    • 1998
  • DUPIC 핵연료 개발에서는 소결체의 물성연구와 노내거동부터 연구를 시작하여 신 개념의 핵연료의 개발에 부합되는 조사시험 계획이 수립되어야 하기 때문에 DUPIC소결체의 물성 및 노내거동 연구를 캡슐을 이용하여 조사시험을 수행할 계획이다. 본 논문에서는 노외 시험 및 예비 특성화(Pre-Characterization)와 노내시험인 DUPIC 핵연료 소결체 시험 그리고 연료봉 조사시험에 필요한 항목들에 대하여 분석하였으며 DUPIC 소결체가 하나로 노심의 CT, IR2, IP9등에서 무계장 캡슐을 이용하여 조사될 경우의 출력을 평가 하였다. 또한 모의 핵연료와 DUPIC 핵연료 소결체의 조사시험을 위해 무계장 캡슐 (Capsule)에 대하여 연구 하였다.

  • PDF

Strength Degradation and Failure of Circular RC Bridge Columns with Longitudinal Steel Connection under Cyclic Lateral Load (반복횡하중을 받는 철근콘크리트 원형 교각의 축방향철근 연결상세에 따른 강도저감 및 파괴거동)

  • Lee Jae-Hoon;Jung Chul-Ho;Ko Seong-Hyun;Son Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.111-124
    • /
    • 2004
  • This research is a part of a research program to verify the seismic performance of circular reinforced concrete bridge columns with respect to longitudinal steel connection details under cyclic lateral load. A total of 21 column specimens were constructed and tested. Main variables in this test program were longitudinal steel connection details(continuous, lap-spliced, and mechanically connected), confinement steel ratio, and axial force ratio, etc. The test results of the columns with different longitudinal steel connection details showed different failure mode, strength degradation, and seismic performance. From the quasi-static test, it was found that the columns with all longitudinal reinforcement lap-spliced showed significantly reduced ductility. However, seismic performance of the columns with half of longitudinal reinforcement lap-spliced showed limited ductility but much more ductile behaviour than the columns with all longitudinal reinforcement lap-spliced. It was also found that the seismic performance, failure mode and strength degradation of columns with mechanical connected longitudinal reinforcement were similar to those of columns with continuous longitudinal reinforcement.

다층구조계내 터널거동의 역해석

  • 전병승;이상도;나경웅;김문겸
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1994.03a
    • /
    • pp.24-33
    • /
    • 1994
  • 지하구조체를 안전하고 경제적으로 형성시키기 위해서는 구조계 구성인자의 재료특성에 대한 정확한 파악과 구조계의 거동에 대한 정확한 해석이 요구된다. 즉, 실제문제를 수치적으로 모형화하고 구조거동을 이해하기 위해서는 대상 암반체의 초기응력상태와 재료특성을 정확히 반영해야 한다. 이러한 암반의 역학적 특성치는 실험실시험이나 현장시험에 의해 구할 수 있으나, 이는 측정지점 주위의 국부적인 영역에 대한 결과이므로 구조체 전체에 대한 특성을 파악하는데 어려움이 있다. (중략)

  • PDF

Experimental Study on the Flexural Behavior Effect of RC Beam Repaired and Strengthened by Latex Modified Concrete (라텍스개질콘크리트로 보수·보강된 RC 보의 휨 거동에 관한 실험적 연구)

  • Kim, Seong-Hwan;Yun, Kyong-Ku;Kim, Yong-Gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.503-510
    • /
    • 2009
  • Latex modified concrete (LMC) is a successful polymer-portland cement concretes, which have been developed and used for many years, in overlaying bridge decks and resurfacing industrial floors. The excellent bond strength to substrate, easy application and high resistance to impact, abrasion, wear, aggressive chemicals and freeze-thaw deterioration have made this material used widely. The objective of this study was to determine experimentally the load-deflection response and ultimate strength of reinforced RC beams. The cracking patterns and the mode of failure were observed. Because of excellent bond strength and repairing effects, the RC beams repaired by LMC at compression or tension zone showed over 100% recovery from damaged structures. The RC beams overlaid by LMC showed significant improvement at load carrying capacity as overlay thickness increases. However, the beams repaired of tension zone without shear stirrups almost showed no strengthen effect, and indicated an interfacial failures. The interfacial behavior was estimated by numerical method adopting the concept of shear flow.

Experimental Analysis of Fretting Wear Behaviors in Elastic Deformable Contacts (탄성변형 접촉에서 프레팅 마멸거동의 실험적 분석)

  • Lee, Young-Ho;Kim, Hyung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.49-54
    • /
    • 2010
  • Fretting wear behavior under elastic deformable contacts was experimentally examined by using a simulated dual cooled fuel rod and its supporting structure. As this fuel rod has larger outer diameter than the typical solid rod to accommodate sufficient internal flow, new supporting structure geometries should be designed and their reliabilities (i.e. vibration characteristics, fretting wear resistance, etc.) are also examined with both analytical and experimental methods. In this study, the supporting structure characteristics and fretting wear behaviors are analyzed and examined by using one of the supporting structure candidates which has an embossing shape. The supporting structure characteristics were examined by using a specially designed test rig and their results were compared with that of analytical method. Based on the test results, the relationship between the supporting structure characteristics and their fretting wear behaviors was discussed in detail.

Simulation for Initial Motion of a Test Vehicle Launched from Sliding Launcher (활강 진수대에서 운용되는 시험용 운동체의 초기 거동 모사)

  • Yepmg-Il Park;Chan-Ki Kim;Sun-Hong Kwon;Man-Hyung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.29-39
    • /
    • 1999
  • In this study, mathematical modelling for initial motion of test vehicle launched from sliding launcher is performed, and simulation results from this mathematical models are verified by comparing them with sea trial results. Especially, it is showed that models using strip method give better results than using empirical formulae and linear equations of motion. This mathematical model can give useful tools to design sliding launchers or test vehicles.

  • PDF

An Experimental Study on the Behavior of Steel Plate-Concrete Wall with Vertical Ribs (수직 보강된 SC 벽체의 거동에 대한 실험적 연구)

  • Lee, Seung Joon;Choi, Byong Jeong;Kim, Tae Kyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.277-287
    • /
    • 2009
  • The objective of this study was to experimentally investigate the structural behavior of steel plate concrete walls with vertical ribs (SSC walls), to compare the experimental results with the currently applied evaluation equations, and to obtain information that would be useful in the development of design equations for SSC walls. SSC test specimens that were subjected to in plane shear forces and bending moments were fabricated and tested. The experimental results show that the effect of vertical ribs on the structural behavior of SSC walls may be neglected, and that the confinement effect of concrete on the steel plates on both sides of the walls was negligible. The comparison of the experimental results with the evaluation equations showed that the structural behavior of SSC walls under shear control is close to that of the evaluation equations, but that the behavior of SSC walls under larger bending moments is not very close to that of the evaluation equations. The current evaluation equations for USC walls may be applied to the design of SSC walls because the structural walls of nuclear power plants are not subjected to large in plane bending moments.

A Study on the Analysis of Underwater Behaviors of Two Bodies Having Different Weight Characteristics (중량 특성이 다른 2종류 운동체의 수중거동 해석 연구)

  • Ahn, Jin-Hyeong;Jung, Chan-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • In this study, underwater behaviors of negative buoyant body and positive buoyant body, which are ejected from a platform, are compared through eject test and simulation. CFD(Computational Fluid Dynamics) method is used to calculate the hydrodynamic derivatives of negative buoyant body with varied hull. Hydrodynamic derivatives that cannot be calculated with CFD are used with the same values of base shape. The pitch angles of test data are much bigger than those of simulated data, and the reason is supposed to be the trailing air effect. A more accurate simulation is possible via modified force modeling which reflects this phenomenon. The underwater behaviors of positive buoyant body and negative buoyant body are somewhat different with each other at the same eject condition, but it may not be a problem in the view of operation.

Experimental study on Static Behavior of H-beam prestressed with Multi-Stepwise TPSM (다단계 온도프리스트레싱 도입 강재보의 정적거동평가를 위한 실험적 연구)

  • An, Jin Hee;Jung, Chi Young;Kim, Jun Hwan;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.247-258
    • /
    • 2008
  • In this study, static loading tests were performed on H-beam specimens to assess the static behavior of H-beam prestressed with multi-stepwise thermal prestressing method (TPSM). The amount of induced thermal prestress and connection type were differentiated among the 400-mm-high and 6,000-mm-long H-beam specimens to evaluate their effect on the behavior of the beams. From the experimental results, it between the H-beam and the cover-plate increased in yielding load by 13~18%, whereas stiffness increased by 27~34%. In case of specimens with both bolting and welding connection, yie lding load increased by 18~29% and stiffness increased by 43~51%. Multi-stepwise initial stress distribution was also observed from the prestressed specimens, verifying the effectiveness of the multi-stepwise TPSM. By application of the multi-stepwise TPSM, a significant increase in yielding load and stiffness can be achieved, hence increasing sectional and prestressing efficiencies.