• Title/Summary/Keyword: 거동분석시스템

Search Result 832, Processing Time 0.022 seconds

Experimental Analysis of Nodal Head-outflow Relationship Using a Model Water Supply Network for Pressure Driven Analysis of Water Distribution System (상수관망 압력기반 수리해석을 위한 모의 실험시설 기반 절점의 압력-유량 관계 분석)

  • Chang, Dongeil;Kang, Kihoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.6
    • /
    • pp.421-428
    • /
    • 2014
  • For the analysis of water supply network, demand-driven and pressure-driven analysis methods have been proposed. Of the two methods, demand-driven analysis (DDA) can only be used in a normal operation condition to evaluate hydraulic status of a pipe network. Under abnormal conditions, i.e., unexpected pipe destruction, or abnormal low pressure conditions, pressure-driven analysis (PDA) method should be used to estimate the suppliable flowrate at each node in a network. In order to carry out the pressure-driven analysis, head-outflow relationship (HOR), which estimates flowrate at a certain pressure at each node, should be first determined. Most previous studies empirically suggested that each node possesses its own characteristic head-outflow relationship, which, therefore, requires verification by using actual field data for proper application in PDA modeling. In this study, a model pipe network was constructed, and various operation scenarios of normal and abnormal conditions, which cannot be realized in real pipe networks, were established. Using the model network, data on pressure and flowrate at each node were obtained at each operation condition. Using the data obtained, previously proposed HOR equations were evaluated. In addition, head-outflow relationship at each node was analyzed especially under multiple pipe destruction events. By analyzing the experimental data obtained from the model network, it was found that flowrate reduction corresponding to a certain pressure drop (by pipe destruction at one or multiple points on the network) followed intrinsic head-outflow relationship of each node. By comparing the experimentally obtained head-outflow relationship with various HOR equations proposed by previous studies, the one proposed by Wagner et al. showed the best agreement with the exponential parameter, m of 3.0.

A Review of the Influence of Sulfate and Sulfide on the Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 심층처분에 미치는 황산염과 황화물의 영향에 대한 고찰)

  • Jin-Seok Kim;Seung Yeop Lee;Sang-Ho Lee;Jang-Soon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.421-433
    • /
    • 2023
  • The final disposal of spent nuclear fuel(SNF) from nuclear power plants takes place in a deep geological repository. The metal canister encasing the SNF is made of cast iron and copper, and is engineered to effectively isolate radioactive isotopes for a long period of time. The SNF is further shielded by a multi-barrier disposal system comprising both engineering and natural barriers. The deep disposal environment gradually changes to an anaerobic reducing environment. In this environment, sulfide is one of the most probable substances to induce corrosion of copper canister. Stress-corrosion cracking(SCC) triggered by sulfide can carry substantial implications for the integrity of the copper canister, potentially posing a significant threat to the long-term safety of the deep disposal repository. Sulfate can exist in various forms within the deep disposal environment or be introduced from the geosphere. Sulfate has the potential to be transformed into sulfide by sulfate-reducing bacteria(SRB), and this converted sulfide can contribute to the corrosion of the copper canister. Bentonite, which is considered as a potential material for buffering and backfilling, contains oxidized sulfate minerals such as gypsum(CaSO4). If there is sufficient space for microorganisms to thrive in the deep disposal environment and if electron donors such as organic carbon are adequately supplied, sulfate can be converted to sulfide through microbial activity. However, the majority of the sulfides generated in the deep disposal system or introduced from the geosphere will be intercepted by the buffer, with only a small amount reaching the metal canister. Pyrite, one of the potential sulfide minerals present in the deep disposal environment, can generate sulfates during the dissolution process, thereby contributing to the corrosion of the copper canister. However, the quantity of oxidation byproducts from pyrite is anticipated to be minimal due to its extremely low solubility. Moreover, the migration of these oxidized byproducts to the metal canister will be restricted by the low hydraulic conductivity of saturated bentonite. We have comprehensively analyzed and summarized key research cases related to the presence of sulfates, reduction processes, and the formation and behavior characteristics of sulfides and pyrite in the deep disposal environment. Our objective was to gain an understanding of the impact of sulfates and sulfides on the long-term safety of high-level radioactive waste disposal repository.