• Title/Summary/Keyword: 객체 정보

Search Result 6,463, Processing Time 0.029 seconds

Multisensory based AR System for Education of Cultural Heritage

  • Jeong, Eunsol;Oh, Jeong-eun;Won, Haeyeon;Yu, Jeongmin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.61-69
    • /
    • 2019
  • In this paper, we propose a multisensory(i.e., visual-auditory-tactile) based AR system for the education of cultural heritage. The proposed system provides a multisensory interaction by designing a user to experience with a 3D printed artifact which is mapped by a virtual 3D content of digital heritage. Compared with the existing systems of cultural heritage education based on augmented reality(AR) technology, this system focused on not only providing learning experience via a sense of visual and auditory, but also a sense of tactile. Furthermore, since this systems mainly provided the direct interactions using a 3D printed model, it gives a higher degree of realism than existing system that use touch or click motions on a 2D display of mobile phones and tablets. According to a result of user testing, we concluded that the proposed system delivered the excellent presence and learning flow to users. Particularly, from the usability evaluation, a 3D printed target artifact which is similar in shape to original heritage artifact, achieved the highest scores among the various tested targets.

3D Thermo-Spatial Modeling Using Drone Thermal Infrared Images (드론 열적외선 영상을 이용한 3차원 열공간 모델링)

  • Shin, Young Ha;Sohn, Kyung Wahn;Lim, SooBong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.223-233
    • /
    • 2021
  • Systematic and continuous monitoring and management of the energy consumption of buildings are important for estimating building energy efficiency, and ultimately aim to cope with climate change and establish effective policies for environment, and energy supply and demand policies. Globally, buildings consume 36% of total energy and account for 39% of carbon dioxide emissions. The purpose of this study is to generate three-dimensional thermo-spatial building models with photogrammetric technique using drone TIR (Thermal Infrared) images to measure the temperature emitted from a building, that is essential for the building energy rating system. The aerial triangulation was performed with both optical and TIR images taken from the sensor mounted on the drone, and the accuracy of the models was analyzed. In addition, the thermo-spatial models of temperature distribution of the buildings in three-dimension were visualized. Although shape of the objects 3D building modeling is relatively inaccurate as the spatial and radiometric resolution of the TIR images are lower than that of optical images, TIR imagery could be used effectively to measure the thermal energy of the buildings based on spatial information. This paper could be meaningful to present extension of photogrammetry to various application. The energy consumption could be quantitatively estimated using the temperature emitted from the individual buildings that eventually would be uses as essential information for building energy efficiency rating system.

A Review of the Legal Nature that Users of the Virtual Currency Exchange Obtain and the Compensation Responsibility for the Damages Caused By Internet Problems or Network Errors (가상통화거래소 이용자가 가지는 법적 성격과 전산장애로 인한 손해배상 책임 연구)

  • Choi, JangWon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.287-294
    • /
    • 2018
  • This thesis covers legal aspects of the crypto-currency exchange and the legal rights of crypto-currencies holders. Unlike financial markets in which central authorities or intermediaries determine the validity of transactions and manage records, crypto-currency markets utilize a decentralization system based on block chain technology. Such distinct characteristics distinguish crypto-currency from currency, notes, or financial instruments. Therefore, we need to check closely the legal principles that are applicable to crypto-currency. Crypto-currency users possess rights indirectly through the crypto-currency exchange. However, we should look at whether crypto-currency can be an object of ownership. This research found that legal protection for crypto-currency exchanges are limited. Domestic laws have many shortcomings to protect users' rights. This study found that users who incurred damages due to internet computation errors at exchanges require a protective system like stock markets. Therefore, studies on the legal controls and system regulations are required to protect users' rights. Also, crypto-currency information exchanges keep inside and protections for users' private information need to be further examined.

Design of IoT Gateway based Event-Driven Architecture for Intelligent Buildings. (IoT 게이트웨이 기반 지능형 건물의 이벤트 중심 아키텍쳐 설계)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.256-259
    • /
    • 2016
  • The growth of mobile devices in Internet of Things (IoT) leads to a number of intelligent buildings related IoT applications. For instance, home automation controlling system uses client system such web apps on smartphone or web service to access the home server by sending control commands. The home server receives the command, then controls for instance the light system. The gateway based RESTful technology responsible for handling clients' requests attests an internet latency in case a large number of clients' requests submit toward the gateway increases. In this paper, we propose the design tasks of the IoT gateway for handling concurrency events. In the procedure of designing tasks, concurrency is best understood by employing multiple levels of abstraction. The way that is eminently to accomplish concurrency is to build an object-oriented environment with support for messages passing between concurrent objects. We also investigate the performance of event-driven architecture for building IoT gateway using node.js on one side and communication protocol based message-oriented middleware known as XMPP to handle communications of intelligent building control devices connected to the gateway through a centralized hub. The Node.JS is 40% faster than the traditional web server side features thread-based approach. The use of Node.js server-side handles a large number of clients' requests, then therefore, reduces delay in performing predefined actions automatically in intelligent building IoT environment.

  • PDF

Development of Mask-RCNN Model for Detecting Greenhouses Based on Satellite Image (위성이미지 기반 시설하우스 판별 Mask-RCNN 모델 개발)

  • Kim, Yun Seok;Heo, Seong;Yoon, Seong Uk;Ahn, Jinhyun;Choi, Inchan;Chang, Sungyul;Lee, Seung-Jae;Chung, Yong Suk
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.156-162
    • /
    • 2021
  • The number of smart farms has increased to save labor in agricultural production as the subsidy become available from central and local governments. The number of illegal greenhouses has also increased, which causes serious issues for the local governments. In the present study, we developed Mask-RCNN model to detect greenhouses based on satellite images. Greenhouses in the satellite images were labeled for training and validation of the model. The Mask-RC NN model had the average precision (AP) of 75.6%. The average precision values for 50% and 75% of overlapping area were 91.1% and 81.8%, respectively. This results indicated that the Mask-RC NN model would be useful to detect the greenhouses recently built without proper permission using a periodical screening procedure based on satellite images. Furthermore, the model can be connected with GIS to establish unified management system for greenhouses. It can also be applied to the statistical analysis of the number and total area of greenhouses.

Location Trigger System for the Application of Context-Awareness based Location services

  • Lee, Yon-Sik;Jang, Min-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.149-157
    • /
    • 2019
  • Recent research has been actively carried out on systems that want to optimize resource utilization by analyzing the intended behavior and pattern of behavior of objects (users, consumers). A service system that applies information about an object's location or behavior must include a location trigger processing system for tracking an object's real-time location. In this paper, we analyze design problems for the implementation of a context-awareness based location trigger system, and present system models based on analysis details. For this purpose, this paper introduces the concept of location trigger for intelligent location tracking techniques about moving situations of objects, and suggests a mobile agent system with active rules that can perform monitoring and appropriate actions based on sensing information and location context information, and uses them to design and implement the location trigger system for context-awareness based location services. The proposed system is verified by implementing location trigger processing scenarios and trigger service and action service protocols. In addition, through experiments on mobile agents with active rules, it is suggested that the proposed system can optimize the role and function of the application system by using rules appropriate to the service characteristics and that it is scalable and effective for location-based service systems. This paper is a preliminary study for the establishment of an optimization system for utilizing resources (equipment, power, manpower, etc.) through the active characteristics of systems such as real-time remote autonomous control and exception handling over consumption patterns and behavior changes of power users. The proposed system can be used in system configurations that induce optimization of resource utilization through intelligent warning and action based on location of objects, and can be effectively applied to the development of various location service systems.

Technology Development for Non-Contact Interface of Multi-Region Classifier based on Context-Aware (상황 인식 기반 다중 영역 분류기 비접촉 인터페이스기술 개발)

  • Jin, Songguo;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.175-182
    • /
    • 2020
  • The non-contact eye tracking is a nonintrusive human-computer interface providing hands-free communications for people with severe disabilities. Recently. it is expected to do an important role in non-contact systems due to the recent coronavirus COVID-19, etc. This paper proposes a novel approach for an eye mouse using an eye tracking method based on a context-aware based AdaBoost multi-region classifier and ASSL algorithm. The conventional AdaBoost algorithm, however, cannot provide sufficiently reliable performance in face tracking for eye cursor pointing estimation, because it cannot take advantage of the spatial context relations among facial features. Therefore, we propose the eye-region context based AdaBoost multiple classifier for the efficient non-contact gaze tracking and mouse implementation. The proposed method detects, tracks, and aggregates various eye features to evaluate the gaze and adjusts active and semi-supervised learning based on the on-screen cursor. The proposed system has been successfully employed in eye location, and it can also be used to detect and track eye features. This system controls the computer cursor along the user's gaze and it was postprocessing by applying Gaussian modeling to prevent shaking during the real-time tracking using Kalman filter. In this system, target objects were randomly generated and the eye tracking performance was analyzed according to the Fits law in real time. It is expected that the utilization of non-contact interfaces.

Filtering-Based Method and Hardware Architecture for Drivable Area Detection in Road Environment Including Vegetation (초목을 포함한 도로 환경에서 주행 가능 영역 검출을 위한 필터링 기반 방법 및 하드웨어 구조)

  • Kim, Younghyeon;Ha, Jiseok;Choi, Cheol-Ho;Moon, Byungin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.51-58
    • /
    • 2022
  • Drivable area detection, one of the main functions of advanced driver assistance systems, means detecting an area where a vehicle can safely drive. The drivable area detection is closely related to the safety of the driver and it requires high accuracy with real-time operation. To satisfy these conditions, V-disparity-based method is widely used to detect a drivable area by calculating the road disparity value in each row of an image. However, the V-disparity-based method can falsely detect a non-road area as a road when the disparity value is not accurate or the disparity value of the object is equal to the disparity value of the road. In a road environment including vegetation, such as a highway and a country road, the vegetation area may be falsely detected as the drivable area because the disparity characteristics of the vegetation are similar to those of the road. Therefore, this paper proposes a drivable area detection method and hardware architecture with a high accuracy in road environments including vegetation areas by reducing the number of false detections caused by V-disparity characteristic. When 289 images provided by KITTI road dataset are used to evaluate the road detection performance of the proposed method, it shows an accuracy of 90.12% and a recall of 97.96%. In addition, when the proposed hardware architecture is implemented on the FPGA platform, it uses 8925 slice registers and 7066 slice LUTs.

Application of deep learning technique for battery lead tab welding error detection (배터리 리드탭 압흔 오류 검출의 딥러닝 기법 적용)

  • Kim, YunHo;Kim, ByeongMan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.71-82
    • /
    • 2022
  • In order to replace the sampling tensile test of products produced in the tab welding process, which is one of the automotive battery manufacturing processes, vision inspectors are currently being developed and used. However, the vision inspection has the problem of inspection position error and the cost of improving it. In order to solve these problems, there are recent cases of applying deep learning technology. As one such case, this paper tries to examine the usefulness of applying Faster R-CNN, one of the deep learning technologies, to existing product inspection. The images acquired through the existing vision inspection machine are used as training data and trained using the Faster R-CNN ResNet101 V1 1024x1024 model. The results of the conventional vision test and Faster R-CNN test are compared and analyzed based on the test standards of 0% non-detection and 10% over-detection. The non-detection rate is 34.5% in the conventional vision test and 0% in the Faster R-CNN test. The over-detection rate is 100% in the conventional vision test and 6.9% in Faster R-CNN. From these results, it is confirmed that deep learning technology is very useful for detecting welding error of lead tabs in automobile batteries.

Corneal Ulcer Region Detection With Semantic Segmentation Using Deep Learning

  • Im, Jinhyuk;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.1-12
    • /
    • 2022
  • Traditional methods of measuring corneal ulcers were difficult to present objective basis for diagnosis because of the subjective judgment of the medical staff through photographs taken with special equipment. In this paper, we propose a method to detect the ulcer area on a pixel basis in corneal ulcer images using a semantic segmentation model. In order to solve this problem, we performed the experiment to detect the ulcer area based on the DeepLab model which has the highest performance in semantic segmentation model. For the experiment, the training and test data were selected and the backbone network of DeepLab model which set as Xception and ResNet, respectively were evaluated and compared the performances. We used Dice similarity coefficient and IoU value as an indicator to evaluate the performances. Experimental results show that when 'crop & resized' images are added to the dataset, it segment the ulcer area with an average accuracy about 93% of Dice similarity coefficient on the DeepLab model with ResNet101 as the backbone network. This study shows that the semantic segmentation model used for object detection also has an ability to make significant results when classifying objects with irregular shapes such as corneal ulcers. Ultimately, we will perform the extension of datasets and experiment with adaptive learning methods through future studies so that they can be implemented in real medical diagnosis environment.