1988년 부산에서 처음 발병된 소나무재선충병(Pine Wilt Disease, PWD)은 우리나라 소나무에 막대한 피해를 주고 있는 심각한 질병이다. 정부에서는 2005년 소나무재선충병 방제특별법을 제정하고 피해지역의 소나무 이동 금지와 방제를 시행하고 있다. 하지만, 기존의 예찰 및 방제방법은 산악지형에서 동시다발적이고 급진적으로 발생하는 소나무재선충병을 줄이기에는 물리적, 경제적 어려움이 있다. 따라서 본 연구에서는 소나무재선충병 감염의심목을 효율적으로 탐지하기 위해 무인항공기를 이용한 영상자료를 바탕으로 딥러닝 객체인식 예찰 방법의 활용가능성을 제시하고자 한다. 소나무재선충병 피해목을 관측하기 위해서 항공촬영을 통해 영상 데이터를 획득하고 정사영상을 제작하였다. 그 결과 198개의 피해목이 확인되었으며, 이를 검증하기 위해서 접근이 불가한 급경사지나 절벽과 같은 곳을 제외하고 현장 조사를 진행하여 84개의 피해목을 확인할 수 있었다. 검증된 데이터를 가지고 분할방법인 SegNet과 검출방법인 YOLOv2를 이용하여 분석한 결과 성능은 각각 0.57, 0.77로 나타났다.
최근 자율주행 자동차를 구현하기 위해 카메라 영상을 통해 객체 및 차선을 인식하여 자율주행하는 영상처리 기술이 연구되고 있다. 안개는 카메라 촬영 영상의 가시성을 떨어뜨리기 때문에 자율주행 자동차 오작동의 원인이 된다. 이를 해결하기 위해 카메라에 실시간 처리가 가능한 안개 제거 기능을 적용하는 것이 필요하다. 따라서 본 논문에서는 성능이 우수한 Sim의 안개 제거방법을 실시간 처리가 가능한 하드웨어로 구현한다. 제안하는 하드웨어는 Verilog HDL을 사용하여 설계하였고, Xilinx사의 xc7z045-2ffg900을 Target device로 설정하여 FPGA 구현하였다. Xilinx Vivado 프로그램을 이용한 논리합성 결과 4K(4096×2160) 고해상도 환경에서 최대 동작 주파수 276.932MHz, 최대 처리 속도 31.279fps를 가짐으로써 실시간 처리 기준을 만족한다.
가상현실은 감각기관(시각, 청각, 촉각)에 전달하는 정보를 조작하여 실제적인 가상의 3차원환경을 사용자에게 제공한다. 최근에는 가상현실은 아바타라는 객체의 등장으로 단순히 사용자에게 가상의 공간을 제공하는 것을 넘어서 가상의 공간에서 타인을 대변하는 아바타와 여러 상호작용을 통해서 또 다른 하나의 가상의 사회를 제공할 수 있는 도구로 자리 잡고 있다. 실제 사회에서의 사회적인 관계에서는 타인과 직접적인 상호작용이 많이 발생하게 되는데, 기존의 연구들은 아바타와 실제적인 상호작용을 하는 환경이 아니었다. 따라서, 본 연구에서는 가상의 아바타와 실제로 상호작용을 할 때 아바타를 어떻게 인지하는 지를 알아보기 위해서 가상환경에서 아바타를 만나서 악수를 청하였을 때 아바타가 악수를 받아들이거나 거절하는 환경을 구현하여 뇌 기능영상 연구를 수행하였다. 아바타의 행동이 어떠한 느낌을 주었는지를 알아본 설문지 결과에서 악수를 받아이들인 아바타에 대해서는 긍정적이고, 적절한 행동을 한다고 받아들인 반면, 악수를 거부한 아바타 에서는 나에게 부정적인 감정을 가기고 있고 거부하고 있다고 피험자가 인식한 것으로 나타났다. 뇌 기능영상 분석 결과 상대 아바타가 악수를 받아준 경우와 거절한 경우 공통적으로 the primary visual area, the visual association area, the SMA, the premotor area과 the cerebellum등의 영역에서 뇌 활성화가 나타났다. 설문결과와 fMRI 분석 결과 이는 피험자가 아바타를 나와 구별되는 사회적인 객체로 인지하였고, 아바타의 동작도 사회적 의미가 있는 동작으로 받아 들였다는 것을 의미한다. 다르게 말해 가상의 아바타가 행동을 통해서 사회적 context 뿐만 아니라 감정도 전달이 가능하다는 것을 의미한다. 본 연구는 fMRI 환경에서 실제로 상호작용이 가능한 환경에서 아바타의 행동에 대한 사용자의 인지를 알아보았다는 것에 의의가 있다고 하겠다.
본 논문에서는 입력된 영상에서 색상 정보와 얼굴에서 주요한 특징정보의 기하 위치 분석과 추출 객체의 유사도 비교를 이용해서 얼굴 영역을 검출한 후 비율정보와 유사도를 이용해 사용자 인증을 하는 방법에 대해서 기술한다. 색상 정보를 이용한 얼굴 추출 알고리즘은 얼굴의 기울어진 정도나 크기 등에 영향을 받지 않는 장점을 가지고 있으므로 형태정보를 이용한 얼굴 추출 알고리즘에 비해 비교우위를 가진다. 하지만 색상 정보를 기반으로 하기 때문에 조명의 변화나, 피부색과 유사한 배경 등 색상에 대해 민감해서 정확한 성능을 유지하기 어렵다. 따라서 색상 정보 이외에 얼굴의 주요 특징 요소인 눈과 입술 등의 특징 정보를 검출하고 각 객체에 대한 유사도 비교를 수행함으로서 색상 정보를 이용한 방법에 비해 더 효율적으로 사용될 수 있다. 본 논문에서는 얼굴을 각각의 개체단위로 분할한 후 각 개체의 비율적인 특징을 계산하고 특정 계산식에 가중치를 부여하며 분할된 눈과 입의 유사도 검색을 통해 유사성을 확인함으로써 사용자를 인식하는 시스템을 제안한다. 제안한 방법을 실험하고 그 결과의 분석을 통해 인식률이 높아짐을 알 수 있었다.
인공신경망의 계층의 깊이가 깊어지고 입력으로 사용되는 데이터 차원이 증가됨에 신경망의 학습 및 인식에 있어서 많은 연산을 고속으로 요구하는 고연산의 문제가 발생한다. 따라서 본 논문에서는 신경망 입력 데이터의 차원을 감소시키기 위한 데이터 차원 감소 방법을 제안한다. 제안하는 선분 특징 분석(Line-segment Feature Analysis; LFA) 알고리즘은 한 영상 내에 존재하는 객체의 선분(Line-segment) 특징을 분석하기 위하여 메디안 필터(median filter)를 사용한 기울기 기반의 윤곽선 검출 알고리즘을 적용한다. 추출된 윤곽 영상은 [0, 1, 2, 4, 8, 16, 32, 64, 128]의 계수 값으로 구성된 3×3 또는 5×5 크기의 검출 필터를 이용하여 8가지 선분의 종류에 상응하는 고유값을 계산한다. 각각의 검출필터로 계산된 고유값으로부터 동일한 반응값을 누적하여 두 개의 1차원의 256 크기의 데이터를 생성하고 두 가지 데이터 요소를 합산하여 LFA256 데이터를, 두 데이터를 합병하여 512 크기의 LAF512 데이터를 생성한다. 제안한 LFA 알고리즘의 성능평가는 필기체 숫자 인식을 위한 데이터 차원 감소를 목적으로 PCA 기법과 AlexNet 모델을 이용하여 비교 실험한 결과 LFA256과 LFA512가 각각 98.7%와 99%의 인식 성능을 보였다.
이 논문에서는 특정 단말기에 대한 독립성을 보장하고 비용의 효율성을 제공하는 새로운 단조 재공 관리 시스템을 제안한다. 지금까지 효율적인 재공 또는 재고 관리를 통해 프로세스 생산성을 향상시키기 위한 다양한 연구가 진행되어 왔으며, 특히 바코드, RFID, 영상인식과 같은 다양한 IT 기술의 접목이 시도되었다. 그러나 단조 재공 관리 환경의 특성상 이러한 접근방법은 많은 문제점을 야기한다. 따라서 이 논문에서는 기존 접근방법의 한계를 극복할 수 있는 새로운 단조 재공 관리 시스템을 제안한다. 제안 시스템은 스마트 모바일 기기의 GPS 정보를 이용하여 객체를 식별하고 객체의 위치를 정확하게 관리한다. 따라서 특별한 식별태그가 요구되지 않으며, 식별태그를 판독하기 위한 특정 단말기가 요구되지 않는다. 이를 통해 기존 접근방법의 문제점을 해결하고 전체적인 단조 재공 관리 프로세스의 생산성을 향상시킨다.
기존의 증강현실은 객체와 배경과의 원활한 상호작용을 위하여 데이터 글러브나 마커 등을 이용하였다. 이는 사용에 불편함과 몰입감 저하의 결과를 발생한다. 증강현실에서 몰입감을 강화하기 위해서는 부가적인 입력장치의 제거가 필요하다. 이를 위해 마커가 부착되지 않은 상태에서도 정확한 공간좌표의 인식을 필요로 한다. 본 논문에서는 증강현실에서의 몰입감 향상을 위해 부가적인 입력장치의 착용없이 상호 작용을 하기 위한 가상의 공간좌표 생성 기법을 제안한다. 제안된 방법은 획득한 영상을 2차원 공간상에 투영하고 특징선을 추출하여 투영된 가상공간좌표를 계산하여 가상의 객체를 투영하였다. 이는 Markerless 증강과 모바일 증강 등에 응용이 가능하다.
최근 딥러닝(deep learning) 인공지능 기반의 컴퓨터 비전 분야는 각종 영상분석 분야에서 화제로 떠오르고 있다. 본 연구에서는 딥러닝 기반의 여러 이미지 인식 알고리즘 중 이미지 내에서 객체를 검출하는 데 사용되는 Faster R-CNN 알고리즘을 이용하여 화재 이미지에서 불꽃을 검출하고자 한다. 학습 과정에서 소량의 데이터셋을 통한 화재검출 정확도 향상을 위해 이미지 오그멘테이션(image augmentation) 기법을 이용하고, 이미지 오그멘테이션을 6가지 유형별로 나누어 학습하여 정확도, 정밀도, 검출률을 비교하였다. 그 결과, 이미지 오그멘테이션의 종류가 늘어날수록 검출률이 상승하지만, 다른 객체 검출 모델들의 일반적인 정확도와 검출률의 관계와 마찬가지로 오검출율 또한 10%에서 최대 30%까지 증가하게 됨을 확인하였다.
본 논문에서는 비전 트랜스포머의 셀프 어텐션이 갖는 지역적 특징 부족을 개선하는 이중 구조 셀프 어텐션 방법을 제안한다. 객체 분류, 객체 분할, 비디오 영상 인식에서 합성곱 신경망보다 연산 효율성이 높은 비전 트랜스포머는 상대적으로 지역적 특징 추출능력이 부족하다. 이 문제를 해결하기 위해 윈도우 또는 쉬프트 윈도우를 기반으로 하는 연구가 많이 이루어지고 있으나 이러한 방법은 여러 단계의 인코더를 사용하여 연산 복잡도의 증가로 셀프 어텐션 기반 트랜스포머의 장점이 약화 된다. 본 논문에서는 기존의 방법보다 locality inductive bias 향상을 위해 self-attention과 neighborhood network를 이용하여 이중 구조 셀프 어텐션을 제안한다. 지역적 컨텍스트 정보 추출을 위한 neighborhood network은 윈도우 구조보다 훨씬 단순한 연산 복잡도를 제공한다. 제안된 이중 구조 셀프 어텐션 트랜스포머와 기존의 트랜스포머의 성능 비교를 위해 CIFAR-10과 CIFAR-100을 학습 데이터를 사용하였으며 실험결과 Top-1 정확도에서 각각 0.63%과 1.57% 성능이 개선되었다.
통계적 데이터를 이용하여 모양 변이가 가능한 능동모양모델(Active Shape Model, ASM)은 이차원 영상의 분할 및 인식에 성공적으로 사용되고 있다. 삼차원 모델 기반 기법은 객체 경계의 인식 및 묘사(delineating)를 위한 더욱 현실적인 모양 억제력(constraint)을 갖는다는 점에서 이차원 모델 기반 기법에 비해 좋은 결과를 가져온다. 그러나 삼차원 모델 기반 기법을 위해서는 분할된 객체들의 집합인 훈련(training) 데이터로부터 삼차원 모양모델을 생성하는 것이 가장 중요하고 필수적인 단계이며, 현재까지도 커다란 도전 과제로 남아있다. 삼차원 모양모델 생성에서 가장 중요한 단계는 포인트 분산모델(PDM)을 생성하는 것이다. PDM 생성을 위해서는 상응하는 특징점(landmark)을 모든 훈련 데이터의 대응하는 위치에서 선택해야 한다. 그러나 현재까지 많이 사용되는 특징점의 수동 선택 기법은 시간이 많이 소비되며, 많은 오류를 발생한다. 본 논문에서는 삼차원 통계적 모양모델의 생성을 위한 새로운 자동 기법을 제안한다. 주어진 삼차원 훈련 모양 데이터에서, 삼차원 모델은 다음 방법에 의해 생성된다. 1) 훈련 모양 데이터의 거리 변환(distance transform)으로부터 평균(mean) 모양 생성, 2) 평균 모양에서 자동적으로 특징점을 선택하기 위한 사면체(tetrahedron) 기법 사용, 3) 거리 표식(distance labeling) 기법을 통한 각 훈련 모양에서 특징점의 전파(propagating). 본 논문에서는 50명의 복부 CT 영상으로부터 간(liver)을 위한 삼차원 모델을 생성하고, 평가를 위i괘 정확성과 밀집도(compactness)를 조사한다. 기존의 삼차원 모델 생성 기법들은 객체의 모양과 기하학적 및 위상학적으로 심각한 제한을 갖지만, 본 논문에서 제안한 기법은 위와 같은 제한 없이 어느 데이터 집합에도 적용할 수 있다.3mW이며, 시제품 ADC의 칩 면적은 $0.47mm^2$ 이다. 각각 56dB, 65dB이고, 전력 소모는 1.2V 전원 전압에서 각각 4.8mW, 2.4mW이며 제작된 ADC의 칩 면적은 $0.8mm^2$이다.quential scan) 알고리즘과 성능을 비교한다. 실험결과, 제안된 알고리즘은 순차 검색에 비하여 최대 13.2배까지 성능이 향상되었으며, 인덱스의 개수 k가 증가함에 따라 검색 성능도 함께 증가하였다.라서 보다 안전성과 효율성이 뛰어난 2차 대사물질을 찾아내는 연구와 아울러 방제기능이 있는 물질의 생합성경로를 구명하고 대사공학적으로 이용하므로 병해충에 저항성이 있고 잡초 방제효과를 갖는 형질전환 식물을 육성하는 연구가 지속적으로 이루어져야 할 것이다.{\sim}83.8%$ 범위(範圍)를 차지 하였다. 5) 칼슘 섭취량(攝取量)은 권장량 500 mg 에 비(比)하여 양구지역(楊口地域) 아동(兒童)이 $282.4{\sim}355.0mg$이었고 여주지역(麗州地域) 아동(兒童)이 $284.6{\sim}429.0mg$ 이었다. 6) 철(鐵) 섭취량(攝取量)은 권장량 10mg에 비(比)하여 양구지역(楊口地域) 아동(兒童)이 $6.0{\sim}12.1mg$ 범위(範圍)이었고 여주지역(麗州地域) 아동(兒童)이 $6.4{\sim}16.7mg$ 범위(範圍)로 상당수의 아동(兒童)이 권장량에 미달(未達) 되었다. 7) 비터민 A 섭취량(攝取量)은 양구지역(楊口地域)이 $703.4{\sim}1495.6\;IU$ 범위(範圍)이었고 여주지역(麗州地域) 아동(兒童)이 $750.5{\sim}1521.2\;IU$ 범위(範圍)로서 ${\beta}-carotene$으로서의 권장량 5100 I.U,에 비(比)하여 매우 부족되었다
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.