• Title/Summary/Keyword: 객체 기반의 변화탐지

Search Result 63, Processing Time 0.018 seconds

A Study on Object-based Change Detection Using Aerial LiDAR Data (항공 LiDAR 데이터를 이용한 객체 기반의 변화탐지 연구)

  • Jeong, Ji-Yeon;Cho, Woo-Sug;Chang, Hwi-Jeong;Jeong, Jae-Wook
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.95-100
    • /
    • 2008
  • 3차원으로 구성되어 있는 실세계를 보다 효과적이고 신속하게 모니터링하기 위해서는 변화된 지역의 정확한 위치정보 획득과 변화 결과의 빠른 도출을 위한 자동화 방안이 필요하다. 일반적으로 변화탐지를 위해 사용되어 온 항공사진이나 위성영상은 자료 획득에 있어 날씨와 같은 자연환경의 영향을 많이 받으며, 자동으로 변화탐지를 수행하는데 많은 문제점을 안고 있다. 반면에 항공 LiDAR 시스템은 영상시스템과는 달리 날씨 등에 영향을 상대적으로 적게 받으며, 지형지물에 대한 3차원 좌표 정보를 직접 획득하기 때문에 자동으로 처리하기에 매우 효율적이다. 본 연구에서는 항공 LiDAR 데이터만을 이용하여 도시지역의 시공간적 변화를 자동으로 탐지하는 방법을 연구 하였다. 변화탐지의 대상이 도시지역이므로 객체를 기반으로 다양한 변수를 사용하여 변화탐지를 수행하였다. 연구에 사용된 데이터는 서로 다른 시기에 획득된 항공 LiDAR 데이터이며, 두 데이터간의 변화탐지를 위해 먼저 상호정합을 수행하였으며, 개별 객체를 추출하기 위해 필터링과 Grouping 과정을 수행하였다. 마지막으로 Grouping된 객체를 대상으로 모양, 면적, 높이 변화를 비교하여 변화를 탐지하였다. 객체의 외곽선과 내부 영역의 모양을 표현하는 형상계수를 사용하므로 수평방향의 객체에 대한 기하학적인 모양 변화를 탐지할 수 있었으며, 객체의 높이값을 비교함으로써 수직방향으로의 변화도 탐지할 수 있었다. 본 연구에서 수행한 객체 기반의 변화탐지 방법은 91.67%의 전체 정확도를 획득하였다.

  • PDF

Object-based Change Detection using Various Pixel-based Change Detection Results and Registration Noise (다양한 화소기반 변화탐지 결과와 등록오차를 이용한 객체기반 변화탐지)

  • Jung, Se Jung;Kim, Tae Heon;Lee, Won Hee;Han, You Kyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.481-489
    • /
    • 2019
  • Change detection, one of the main applications of multi-temporal satellite images, is an indicator that directly reflects changes in human activity. Change detection can be divided into pixel-based change detection and object-based change detection. Although pixel-based change detection is traditional method which is mostly used because of its simple algorithms and relatively easy quantitative analysis, applying this method in VHR (Very High Resolution) images cause misdetection or noise. Because of this, pixel-based change detection is less utilized in VHR images. In addition, the sensor of acquisition or geographical characteristics bring registration noise even if co-registration is conducted. Registration noise is a barrier that reduces accuracy when extracting spatial information for utilizing VHR images. In this study object-based change detection of VHR images was performed considering registration noise. In this case, object-based change detection results were derived considering various pixel-based change detection methods, and the major voting technique was applied in the process with segmentation image. The final object-based change detection result applied by the proposed method was compared its performance with other results through reference data.

Unsupervised Change Detection for Very High-spatial Resolution Satellite Imagery by Using Object-based IR-MAD Algorithm (객체 기반의 IR-MAD 기법을 활용한 고해상도 위성영상의 무감독 변화탐지)

  • Jaewan, Choi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.297-304
    • /
    • 2015
  • The change detection algorithms, based on remotely sensed satellite imagery, can be applied to various applications, such as the hazard/disaster analysis and the land monitoring. However, unchanged areas sometimes detected as the changed areas due to various errors in relief displacements and noise pixels, included in the original multi-temporal dataset at the application of unsupervised change detection algorithm. In this research, the object-based changed detection for the high-spatial resolution satellite images is applied by using the IR-MAD (Iteratively Reweighted- Multivariate Alteration Detection), which is one of those representative change detection algorithms. In additionally, we tried to increase the accuracy of change detection results with using the additional information, based on the cross-sharpening method. In the experiment, we used the KOMPSAT-2 satellite sensor, and resulted in the object-based IR-MAD algorithm, representing higher changed detection accuracy than that by the pixel-based IR-MAD. Also, the object-based IR-MAD, focused on cross-sharpened images, increased in accuracy of changed detection, compared to the original object-based IR-MAD. Through these experiments, we could conclude that the land monitoring and the change detection with the high-spatial-resolution satellite imagery can be accomplished efficiency by using the object-based IR-MAD algorithm.

Comparison of Pixel-based Change Detection Methods for Detecting Changes on Small Objects (소형객체 변화탐지를 위한 화소기반 변화탐지기법의 성능 비교분석)

  • Seo, Junghoon;Park, Wonkyu;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.177-198
    • /
    • 2021
  • Existing change detection researches have been focused on changes of land use and land cover (LULC), damaged areas, or large vegetated and water regions. On the other hands, increased temporal and spatial resolution of satellite images are strongly suggesting the feasibility of change detection of small objects such as vehicles and ships. In order to check the feasibility, this paper analyzes the performance of existing pixel-based change detection methods over small objects. We applied pixel differencing, PCA (principal component analysis) analysis, MAD (Multivariate Alteration Detection), and IR-MAD (Iteratively Reweighted-MAD) to Kompsat-3A and Google Map images taken within 10 days. We extracted ground references for changed and non-changed small objects from the images and used them for performance analysis of change detection results. Our analysis showed that MAD and IR-MAD, that are known to perform best over LULC and large areal changes, offered best performance over small object changes among the methods tested. It also showed that the spectral band with high reflectivity of the object of interest needs to be included for change analysis.

Object-based Building Change Detection Using Azimuth and Elevation Angles of Sun and Platform in the Multi-sensor Images (태양과 플랫폼의 방위각 및 고도각을 이용한 이종 센서 영상에서의 객체기반 건물 변화탐지)

  • Jung, Sejung;Park, Jueon;Lee, Won Hee;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.989-1006
    • /
    • 2020
  • Building change monitoring based on building detection is one of the most important fields in terms of monitoring artificial structures using high-resolution multi-temporal images such as CAS500-1 and 2, which are scheduled to be launched. However, not only the various shapes and sizes of buildings located on the surface of the Earth, but also the shadows or trees around them make it difficult to detect the buildings accurately. Also, a large number of misdetection are caused by relief displacement according to the azimuth and elevation angles of the platform. In this study, object-based building detection was performed using the azimuth angle of the Sun and the corresponding main direction of shadows to improve the results of building change detection. After that, the platform's azimuth and elevation angles were used to detect changed buildings. The object-based segmentation was performed on a high-resolution imagery, and then shadow objects were classified through the shadow intensity, and feature information such as rectangular fit, Gray-Level Co-occurrence Matrix (GLCM) homogeneity and area of each object were calculated for building candidate detection. Then, the final buildings were detected using the direction and distance relationship between the center of building candidate object and its shadow according to the azimuth angle of the Sun. A total of three methods were proposed for the building change detection between building objects detected in each image: simple overlay between objects, comparison of the object sizes according to the elevation angle of the platform, and consideration of direction between objects according to the azimuth angle of the platform. In this study, residential area was selected as study area using high-resolution imagery acquired from KOMPSAT-3 and Unmanned Aerial Vehicle (UAV). Experimental results have shown that F1-scores of building detection results detected using feature information were 0.488 and 0.696 respectively in KOMPSAT-3 image and UAV image, whereas F1-scores of building detection results considering shadows were 0.876 and 0.867, respectively, indicating that the accuracy of building detection method considering shadows is higher. Also among the three proposed building change detection methods, the F1-score of the consideration of direction between objects according to the azimuth angles was the highest at 0.891.

Automatic Change Detection Based on Areal Feature Matching in Different Network Data-sets (이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지)

  • Kim, Jiyoung;Huh, Yong;Yu, Kiyun;Kim, Jung Ok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.483-491
    • /
    • 2013
  • By a development of car navigation systems and mobile or positioning technology, it increases interest in location based services, especially pedestrian navigation systems. Updating of digital maps is important because digital maps are mass data and required to short updating cycle. In this paper, we proposed change detection for different network data-sets based on areal feature matching. Prior to change detection, we defined type of updating between different network data-sets. Next, we transformed road lines into areal features(block) that are surrounded by them and calculated a shape similarity between blocks in different data-sets. Blocks that a shape similarity is more than 0.6 are selected candidate block pairs. Secondly, we detected changed-block pairs by bipartite graph clustering or properties of a concave polygon according to types of updating, and calculated Fr$\acute{e}$chet distance between segments within the block or forming it. At this time, road segments of KAIS map that Fr$\acute{e}$chet distance is more than 50 are extracted as updating road features. As a result of accuracy evaluation, a value of detection rate appears high at 0.965. We could thus identify that a proposed method is able to apply to change detection between different network data-sets.

Urban Change Detection for High-resolution Satellite Images Using U-Net Based on SPADE (SPADE 기반 U-Net을 이용한 고해상도 위성영상에서의 도시 변화탐지)

  • Song, Changwoo;Wahyu, Wiratama;Jung, Jihun;Hong, Seongjae;Kim, Daehee;Kang, Joohyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1579-1590
    • /
    • 2020
  • In this paper, spatially-adaptive denormalization (SPADE) based U-Net is proposed to detect changes by using high-resolution satellite images. The proposed network is to preserve spatial information using SPADE. Change detection methods using high-resolution satellite images can be used to resolve various urban problems such as city planning and forecasting. For using pixel-based change detection, which is a conventional method such as Iteratively Reweighted-Multivariate Alteration Detection (IR-MAD), unchanged areas will be detected as changing areas because changes in pixels are sensitive to the state of the environment such as seasonal changes between images. Therefore, in this paper, to precisely detect the changes of the objects that consist of the city in time-series satellite images, the semantic spatial objects that consist of the city are defined, extracted through deep learning based image segmentation, and then analyzed the changes between areas to carry out change detection. The semantic objects for analyzing changes were defined as six classes: building, road, farmland, vinyl house, forest area, and waterside area. Each network model learned with KOMPSAT-3A satellite images performs a change detection for the time-series KOMPSAT-3 satellite images. For objective assessments for change detection, we use F1-score, kappa. We found that the proposed method gives a better performance compared to U-Net and UNet++ by achieving an average F1-score of 0.77, kappa of 77.29.

Development of Chinese Cabbage Detection Algorithm Based on Drone Multi-spectral Image and Computer Vision Techniques (드론 다중분광영상과 컴퓨터 비전 기술을 이용한 배추 객체 탐지 알고리즘 개발)

  • Ryu, Jae-Hyun;Han, Jung-Gon;Ahn, Ho-yong;Na, Sang-Il;Lee, Byungmo;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.535-543
    • /
    • 2022
  • A drone is used to diagnose crop growth and to provide information through images in the agriculture field. In the case of using high spatial resolution drone images, growth information for each object can be produced. However, accurate object detection is required and adjacent objects should be efficiently classified. The purpose of this study is to develop a Chinese cabbage object detection algorithm using multispectral reflectance images observed from drone and computer vision techniques. Drone images were captured between 7 and 15 days after planting a Chinese cabbage from 2018 to 2020 years. The thresholds of object detection algorithm were set based on 2019 year, and the algorithm was evaluated based on images in 2018 and 2019 years. The vegetation area was classified using the characteristics of spectral reflectance. Then, morphology techniques such as dilatation, erosion, and image segmentation by considering the size of the object were applied to improve the object detection accuracy in the vegetation area. The precision of the developed object detection algorithm was over 95.19%, and the recall and accuracy were over 95.4% and 93.68%, respectively. The F1-Score of the algorithm was over 0.967 for 2 years. The location information about the center of the Chinese cabbage object extracted using the developed algorithm will be used as data to provide decision-making information during the growing season of crops.

Multiple Object Detection and Tracking System robust to various Environment (환경변화에 강인한 다중 객체 탐지 및 추적 시스템)

  • Lee, Wu-Ju;Lee, Bae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.88-94
    • /
    • 2009
  • This paper proposes real time object detection and tracking algorithm that can be applied to security and supervisory system field. A proposed system is devide into object detection phase and object tracking phase. In object detection, we suggest Adaptive background subtraction method and Adaptive block based model which are advanced motion detecting methods to detect exact object motions. In object tracking, we design a multiple vehicle tracking system based on Kalman filtering. As a result of experiment, motion of moving object can be estimated. the result of tracking multipul object was not lost and object was tracked correctly. Also, we obtained improved result from long range detection and tracking.

Object-based Building Change Detection from LiDAR Data and Digital Map Using Adaptive Overlay Threshold (적응적 중첩 임계치를 이용한 LiDAR 자료와 수치지도의 객체기반 건물변화탐지)

  • Lee, Sang-Yeop;Lee, Jeong-Ho;Han, Su-Hee;Choi, Jae-Wan;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.49-56
    • /
    • 2011
  • Because urban areas change rapidly, it is necessary to reflect urban changes in a digital map database in a timely manner. To address these issues, LiDAR data was used to detect changes in urban area buildings. The purpose of this study is to detect object-based building change using LiDAR data and existing digital maps, and classify change types. In the study, we classified change type using overlay and shape comparison with building layer of the digital maps and point-based extracted building outline from the LiDAR data. When applying the overlay method, we were able to increase the accuracy and objectivity of the change detection process throughout an adaptive threshold applied to each object. In the experiments, it was demonstrated that classifying and detecting changes in urban areas using the proposed method can provide superior classification accuracy compared with the existing methodology.