본 논문은 이미지에서 Quadtree를 이용한 색상-공간 특징 추출과 이미지 내에 포함되어 있는 객체의 MBR(Minimum Boundary Rectangie)을 구하여 질감 정보를 추출하는 방법을 제안한다. 제안된 방법은 각 이미지로부터 DC 이미지를 만들고 색상 좌표계를 변환한 후, Quadtree를 이용하여 영역을 분할한다. 영역의 분한 기준은 제안된 조건에 의하여 이루어지며, 각 분할된 영역으로부터 대표 색상을 추출한다. 그리고, 이미지 분할(segmentation)을 통하여 각 이미지의 객체, 객체를 포함한 배경, 또는 일부 배경의 MBR을 구하고, 제안된 알고리즘에 의하여 검색된 MBR의 웨이블릿 계수(wavelet coefficients)를 계산한다. 이 계수들이 MBR의 질감 정보가 되며, 추출된 색상-공간 정보와 질감 정보를 이용하여 제안된 유사도 계산 방법을 통하여 결과를 나타내게 된다. 제안된 방법은 원 이미지(original image)에 비해 특징 정보의 저장 공간을 53% 감소시켰으며, 성능은 유사하게 나타났다. 그리고, 질감 정보를 추가함으로써, 색상-공간 특징의 단점인 객체 정보의 손실을 보완하였고, 질의 이미지의 객체를 포함한 검색 결과를 보였다.
3차원으로 구성되어 있는 실세계를 보다 효과적이고 신속하게 모니터링하기 위해서는 변화된 지역의 정확한 위치정보 획득과 변화 결과의 빠른 도출을 위한 자동화 방안이 필요하다. 일반적으로 변화탐지를 위해 사용되어 온 항공사진이나 위성영상은 자료 획득에 있어 날씨와 같은 자연환경의 영향을 많이 받으며, 자동으로 변화탐지를 수행하는데 많은 문제점을 안고 있다. 반면에 항공 LiDAR 시스템은 영상시스템과는 달리 날씨 등에 영향을 상대적으로 적게 받으며, 지형지물에 대한 3차원 좌표 정보를 직접 획득하기 때문에 자동으로 처리하기에 매우 효율적이다. 본 연구에서는 항공 LiDAR 데이터만을 이용하여 도시지역의 시공간적 변화를 자동으로 탐지하는 방법을 연구 하였다. 변화탐지의 대상이 도시지역이므로 객체를 기반으로 다양한 변수를 사용하여 변화탐지를 수행하였다. 연구에 사용된 데이터는 서로 다른 시기에 획득된 항공 LiDAR 데이터이며, 두 데이터간의 변화탐지를 위해 먼저 상호정합을 수행하였으며, 개별 객체를 추출하기 위해 필터링과 Grouping 과정을 수행하였다. 마지막으로 Grouping된 객체를 대상으로 모양, 면적, 높이 변화를 비교하여 변화를 탐지하였다. 객체의 외곽선과 내부 영역의 모양을 표현하는 형상계수를 사용하므로 수평방향의 객체에 대한 기하학적인 모양 변화를 탐지할 수 있었으며, 객체의 높이값을 비교함으로써 수직방향으로의 변화도 탐지할 수 있었다. 본 연구에서 수행한 객체 기반의 변화탐지 방법은 91.67%의 전체 정확도를 획득하였다.
차량 추적 시스템(vehicle tracking system)은 교통 흐름 파악, 차량 감시, 사고 감지 등을 통하여 교통 정체에 따른 차량의 이동 경로를 유도할 수 있고, 교통사고를 사전에 방지할 수 있게 하는 시스템이다. 효과적인 차량 추적을 위해서는 먼저 연속된 영상 내의 각 객체의 특징 값을 추출하여 영상 내에 존재하는 차량 객체를 인지할 수 있어야 한다. 다음으로, 검출된 다중 객체에 대하여 영상 간 객체 매칭을 통해 연속된 프레임에 걸쳐 출현하는 동일한 차량을 인식함으로써 각 차량의 움직임을 추적할 수 있다. 본 논문에서는 차 영상의 이진화 및 레이블링(labeling)을 통하여 객체를 검출하고, 검출한 객체의 최소 외접 직사각형(minimum bounding rectangle: MBR)의 중심 좌표와 이 MBR의 가로, 세로 방향에 대한 라인(line)별 1D FFT(fast Fourier transform) 변환 결과의 평균 계수 값을 계산하여 객체의 특징 값을 구한다. 다음으로, 연속된 프레임에 걸쳐 출현하는 객체들 중 유사도가 가장 높은 객체 쌍을 동일한 객체로 인식하여 객체를 추적하는 방법을 제안한다. 실험 결과, 제안한 방법은 객체의 기하학적 특성에 기초한 기존 방법들에 비하여 정확한 추적이 가능함을 보여주었다.
본 연구는 인원 계수에 딥러닝 알고리즘을 적용한다. 인원 계수는 안전 관리 분야, 상업 분야에 적용될 수 있다. 예를 들어, 건물 내 화재 발생 시, 계수된 인원을 활용하여 인명 피해를 최소화할 수 있다. 다른 예로, 유동인구 데이터를 기반으로 상권을 분석하여 경제적 효율성을 극대화할 수 있다. 이처럼 인원 데이터의 중요성이 증가함에 따라 인원 계수 연구도 활발하다. 그 예로, 객체 탐지(Object Detection) 같은 딥러닝 기반 인원 계수, 센서 기반 인원 계수 등이 있다. 본 연구에선 딥러닝 알고리즘인 VGGNet을 사용하여 인원을 계수했다. 결과로 Mean Absolute Percentage Error(이하 MAPE)는 약 5.9%의 오차율을 보였다. 결과 확인 방법으로는 설명 가능한 인공지능(XAI) 알고리즘 중 하나인 Grad-CAM을 적용했다.
측정점으로부터의 3차원 객체 자동인식은 컴퓨터비전, 지능형로봇 등의 분야에서 주요 연구주제이다. 본 논문에서 저자는 측정오차가 포함되어 있으며 정렬되지 않은 대용량 3차원 측정점으로부터 객체를 자동적으로 추출하며 그 형상계수를 추정하는 소프트웨어 기술에 대한 소개를 하고자 한다. 해당 소프트웨어는 기능적으로 상호 연결된 형상모델 제시, 측정점 분할, 형상모델 맞춤의 세 부분으로 이루어졌으며 최단거리 최소제곱법(ODF)이 핵심요소이다. ODF는 형상모델과 측정점 사이의 최단거리의 제곱합을 최소화하는 형상모델 계수를 추정한다. 무작위로 선정된 부분 측정점에 대한 임시 형상모델로서 이차 곡면이 ODF에 의하여 구하여지면 우리는 이로부터 3차원 객체를 자동적으로 추출하는 과정인 최종 형상모델 제시, 측정점 분할, 형상모델 맞춤에 필요한 초기값을 제공할 수 있다. 소개된 소프트웨어 기술을 실제 3차원 측정점에 적용함으로써 그의 성능을 확인하고자 한다.
본 논문은 입력되는 영상에서 특정 객체를 찾기 위하여 특징 검출 및 매칭 결과를 분석하여 기술한다. 영상의 특징을 추출하는 방법 중 코너를 특징으로 하는 방법인 해리스 코너 검출(Harris corner detection)을 이용하여 코너를 추출하였으며, 추출한 특징을 이용하여 다양한 크기의 템플릿을 만들어 입력된 영상과 상관계수를 구해 최대값을 가지는 위치를 찾아 입력된 영상과 객체를 매칭 시킨 결과를 분석하였다. 본 논문의 연구 결과들은 객체의 탐지 등과 같은 영상 분석 기반 기술에 활용될 수 있으리라 기대된다.
본 논문은 컬러 영상을 명암도에 따른 공간적 객체 분할인 YIQ 모델을 사용하여 객체 분할한 영상의 임계값에 따른 적응적 형태학을 이용하여 영상의 경계면을 레벨 업시킨 후, 이를 웨이브렛에 적용하여 최적의 에지를 검출하였다. 또한, 흑백 영상보다 더 많은 더 정보를 가진컬러 영상을 사용하여, 기존의 영상 에지 검출 알고리즘인 Sobel 에지 검출과 다른 웨이브렛기저 계수를 적용한 에지 검출 방법과 비교하고, 제안된 알고리즘이 기존의 다른 에지 검출보다 우수함을 확인하였다. 특히 에지와 에지의 부분이 가까울 때 정확한 에지를 검출하였으며, 완만한 곡선을 가지고 있는 부분에서 더 우수한 결과 에지를 얻을 수 있음을 확인하였다.
한국의 DMB 서비스는 이미 대중화되어 많은 이용자들이 이용하고 있다. 그러나 최신 디스플레이 장치들은DMB 컨텐츠의 해상도에 비해 더 높은 해상도를 지원하고 있으며, 다양한 방법의 동영상 재표본화 기술을 채용하고 있다. 일반적으로 주관적인 영상 품질은 영상 내 객체에 대한 인식률에 따라 결정되며, 에지 공간에서 객체 간구분이 명확할수록 증가한다. 에지는 객체와 배경간의 경계이며 겹쳐진 사물간의 경계를 나타내는데, H.264/AVC(이하 AVC)에서 사용되는 화면 내 예측 부호화에서 선택되는 예측 모드와 필터를 통해 추출된 에지 정보는 80% 이상의 유사도를 보인다. 본 연구에서는 H.264 동영상 부호화에서 사용되는 화면 내 예측 부호화 정보와 DCT 계수 정보의 관계를 이용하여 에지 정보를 추출하여, 이를 이용한 효과적인 상향 표본화 방법을 제안한다.
일반적으로 영상내의 중요한 정보는 객체 영역에 많이 포함되어 있다. 따라서 본 논문에서는 양방향 반올림 필터를 이용한 객체 영역 우선 전송 기법을 제안한다. 제안한 방법은 양방향 반올림 필터에 의해 객체 영역을 추출한 후, SPIHT를 이용한 부호화시 객체 영역의 웨이브릿 계수들을 우선 전송함으로써 짧은 시간내에 영상내 중요 정보들이 다른 정보들 보다 빨리 복원되도록 한다. 따라서 매우 낮은 비트율에서 영상내의 중요 정보를 파악할 수 있어, 인터넷상에서 사용자가 영상을 검색할 경우 보다 빨리 중요한 정보를 파악하여 계속적인 전송 여부를 판단할 수 있기 때문에 검색 시간과 검색 효율을 개선시킬 수 있다.
본 연구에서는 다양한 외부 조건 하에서 촬영된 영상을 대상으로 신속하고 정확하게 교통 객체를 검출하는 교통 객체 검출 통합 프레임워크를 개발하였다. 제안된 프레임워크는 딥러닝 기술 기반의 직접 객체 인식 기술과 다중 객체 추적 기술, 그리고 동영상 전처리 기술로 구성되며, 영상의 안정성, 기상, 촬영 각도 등의 다양한 외부 조건에서 촬영된 영상을 대상으로 승용차, 버스, 트럭, 및 미니밴과 같은 교통 객체를 인식하고, 이를 실시간으로 추적하여 교통량 데이터를 계수한다. 제안된 방법의 성능 검증을 위해 다양한 외부 조건에서 촬영된 영상 8개를 대상으로 제안된 방법의 성능 검증을 수행한 결과, 우천 및 강설을 제외한 모든 조건에서 98% 이상의 높은 정확도를 보이는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.