• Title/Summary/Keyword: 객체영역

Search Result 1,344, Processing Time 0.023 seconds

A Study of Object Extraction and Trace at Real Time Images (실시간 영상에서 객체 추출 및 추적에 관한 연구)

  • Jang, Jung-Hwa
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.475-478
    • /
    • 2010
  • 본 논문에서는 실시간 영상에서 적응적 배경영상을 이용하여 객체를 추출하고 추적하는 방법을 제안한다. 입력되는 영상에서 배경영역의 잡음을 제거하고 조명에 강인한 객체 추출을 위하여 객체영역이 아닌 배경영역 부분을 실시간으로 갱신함으로써 적응적 배경영상을 생성한다. 그리고 배경영상과 카메라로부터 입력되는 입력영상과의 차를 이용하여 객체를 추출한다. 추출된 객체의 내부점을 이용하여 최소사각영역을 설정하고, 이를 통해 객체를 추적한다.

  • PDF

Moving Object Segmentation Using the Clustering of Region Trajectories (영역 궤적의 클러스터링을 이용한 비디오 영상에서의 움직이는 객체의 검출)

  • 권영진;이재호;김회율
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.15-18
    • /
    • 2001
  • 동영상에서 움직이는 객체 검출은 동영상의 내용을 표현하고 유사한 동영상을 검색하는 데 있어 중요한 특징간을 추출하는 방법으로 사용된다. 그러나 복잡하게 카메라가 움직이는 동영상에서 움직이는 객체 검출은 아직까지 어려운 과제이다. 본 논문에서는 복잡한 카메라의 움직임이 있는 환경에서 움직이는 객체를 강인하게 검출하는 방법을 제안한다. 움직이는 객체 검출 방법은 입력 영상을 색상간의 클러스터링을 이용하여 각 영역으로 구분하는 Mean Shift 알고리즘과 인접한 프레임에서 구분된 영역을 대응시켜 영역의 모션 벡터를 구하는 영역 매칭, 유사한 궤적을 가지는 영역들의 클러스터링을 이용하여 객체를 검출하는 궤적 클러스터링 알고리즘을 사용한다. 제안한 영역 기반 알고리즘은 기존의 픽셀이나 블록 기반의 방법보다 움직이는 객체를 정확하게 검출하였다. 실험 결과 복잡하게 움직이는 카메라의 환경 속에서 움직이는 객체를 강인하게 검출하였다.

  • PDF

Image Retrieval based on Central Objects in Color Images (중심 객체 기반의 영상 검색 기술)

  • 권선미;김성영;김민환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.145-148
    • /
    • 2002
  • 우리가 원하는 고수준의 검색 개념을 영상에서의 저수준 특징들을 조합하여 표현하는 데는 한계가 있다. 한편, 우리의 검색 개념은 주로 영상에 포함된 객체 단위로 형성되는 것이 일반적이다. 본 논문에서는 영상의 중심 부근에 비교적 큰 크기로 정의되는 중심 객체 및 중심 객체주변의 배경 영역을 추출하여 검색에 활용함으로써, 인간의 검색 의지를 최대한 정확하게 반영할 수 있는 하나의 방법을 제안한다. 중심 객체와 배경 영역은 영상분할 및 영역병합 결과에서 영상의 중앙 및 모서리에 존재하는 영역을 선정하여 칼라 유사도를 기준으로 영역확장을 통해 구한다. 검색은 단계적으로 할 수 있도록 하였는데, 먼저 사용자의 키워드에 의한 검색이 가능하도록 하였으며, 검색 결과는 그룹핑에 의한 대표영상을 보여 준 후 사용자가 원하는 영상을 선택적으로 얻을 수 있도록 하였다. 아울러, 하나 이상의 영상에서 추출된 객체와 배경을 조합하여 재검색할 수 있도록 함으로써 검색 성능을 높이고자 하였다. 한편, 자동 추출된 객체를 이용하여 사용자가 객체 영역을 지정하기 위해 개입하는 번거로움을 줄이면서도 사용자가 영역을 직접 선택한 경우와 비슷한 결과를 얻을 수 있도록 하였다.

  • PDF

Video Object Extraction using Level Set Method (레벨셑 방법을 이용한 비디오 객체 추출)

  • 이광연;김성대
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.337-340
    • /
    • 2000
  • 비디오객체 추출 기법은 MPEG-4 및 MPEG-7의 응용을 목표로 최근 활발하게 연구되고 있다. 이들 연구는 객체 추출의 전체적인 구조와 정확한 윤곽선 검출 알고리즘의 개발에 초점을 맞추고 있으며 제한적인 조건하에서 만족할 만한 성능을 내고 있다 그러나, 카메라 움직임, 객체의 빠른 움직임, 비강체 운동 등 보다 일반적인 상황에서는 객체 추출의 안정성이 떨어진다. 본 논문에서는 객체 추출의 안정성을 높이기 위해 칼라, 움직임 정보 등의 특징정보(feature)가 균일한 영역으로 사전분할하고, 분할된 균일영역을 추적하는 알고리즘을 제안한다. 추적된 균일 영역간의 경계는 각 영역의 통계적 분포와 영역경계의 윤곽선으로 정의된 에너지를 레벨셑 방법으로 최소화함으로 조정된다.

  • PDF

Object Extraction and Tracking out of Color Image in Real-Time (실시간 칼라영상에서 객체추출 및 추적)

  • Choi, Nae-Won;Oh, Hae-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.1
    • /
    • pp.81-86
    • /
    • 2003
  • In this paper, we propose the tracking method of moving object which use extracted object by difference between background image and target image in fixed domain. As a extraction method of object, calculate not pixel of full image but predefined some edge pixel of image to get a position of new object. Since the center area Is excluded from calculation, the extraction time is efficiently reduced. To extract object in the predefined area, get a starting point in advance and then extract size of width and height of object. Central coordinate is used to track moved object.

A Study on Color Image Grouping Method based on Color Objects (객체가 있는 칼라 영상에 대찰 객체별 그룹핑 방법에 대한 연구)

  • 김성영;박창민;권규복;김민환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.06a
    • /
    • pp.128-132
    • /
    • 2001
  • 본 논문에서는 객체가 포함되어 있는 칼라 영상들의 집합으로부터 유사한 시각적 특징을 가진 캑체를 공통적으로 포함하는 영상들을 추출하여, 전체 영상들을 소수의 그룹으로 묶을 수 있는 방법을 제안한다. 먼저 영상에 포함된 객체는 주로 영상의 내부 위치에 나타난다는 사실에 착안하여, 영상의 경계와 접하지 않는 비경계 영역들을 병합하여 객체가 포함된 영역으로 간주한다. 그러나, 병합된 내부 영역에는 객체가 아닌 영역들도 포함하고 있을 수 있으므로, 칼라 히스토그램만을 이용하여 내부 영역에 대한 특징으로 이용한다. 이러한 내부 영역의 칼라 특징들이 분포하는 형상을 분석하여 밀집도가 높은 클러스터를 그룹으로 추출한다. 이때, 밀집도는 일반적으로 사용하는 공간적인 분포 대신에 히스토그램 인터섹션에 의한 유사도를 이용하여 정의한다. 즉, 서로 유사도가 놓은 것들이 집중되어 분포되어 있는 경우에 밀집도가 높은 클러스터로 간주하여 추출하는 방법을 사용한다. 클러스터의 형상 및 개수를 자동적으로 결정할 수 있는 방법도 제안한다. 실험에 의해, 추출한 클러스터의 칼라 영상들이 동일한 객체를 포함하고 있음을 알 수 있었으나, 향후 보다 안정화된 방법의 개발이 필요하다. 아울러, 클러스터별로 객체의 의미를 부여할 수 있는 방법론의 개발도 필요함을 알 수 있었다.

  • PDF

Content-based Image Retrieval using Color Ratio and Moment of Object Region (객체영역의 컬러비와 모멘트를 이용한 내용기반 영상검색)

  • Kim, Eun-Kyong;Oh, Jun-Taek;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.501-508
    • /
    • 2002
  • In this paper, we propose a content-based image retrieval using the color ratio and moment of object region. We acquire an optimal spatial information by the region splitting that utilizes horizontal-vertical projection and dominant color. It is based on hypothesis that an object locates in the center of image. We use color ratio and moment as feature informations. Those are extracted from the splitted regions and have the invariant property for various transformation, and besides, similarity measure utilizes a modified histogram intersection to acquire correlation information between bins in a color histogram. In experimental results, the proposed method shows more flexible and efficient performance than existing methods based on region splitting.

The Effective Background Modeling Method by User Intervention (사용자 개입을 통한 효과적 배경 모델 생성 기법)

  • Kim, Hyungmin;Lee, Jae Hoon;Park, Jong-Il;Kim, Yookyung;Kim, Kwang-yong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.11a
    • /
    • pp.47-50
    • /
    • 2016
  • 객체를 추적하는 기술은 컴퓨터 비전 분야에서 활발히 연구되고 있는 분야 중 하나이다. 그 중 고정된 단일 카메라를 이용한 객체 추적 기술은 비디오 감시(Surveillance) 등에서 활용되고 있다. 고정된 카메라 환경에서 객체를 추적하는 방법 중 배경 모델링(Background Modeling)을 이용한 방법은 간단하면서도 널리 사용되는 방법 중 하나이다. 객체의 움직임이나 특징을 분석하여 배경 모델을 생성한 후 배경 정보를 이용하여 전경을 분리하면 쉽게 객체를 추출할 수 있다. 그러나 객체의 움직임이 적은 경우 해당 영역에서의 배경 모델은 정확하게 생성될 수 없다. 배경 모델을 학습하는 동안 객체가 충분이 움직이면 이런 문제를 해결할 수 있으나 객체가 움직이기 전까지는 오류가 지속된다. 이런 문제를 해결하기 위해 본 논문에서는 인페인팅(Inpainting)을 이용하여 움직임이 적은 영역을 보정하여 정확한 배경 모델을 생성하는 방법을 제안한다. 배경 모델을 생성한 후 객체로 식별할 수 있는 후보 영역을 식별한다. 선정된 영역들 중 사용자가 객체로 판단되는 영역을 선택하여 해당 영역에 대해 인페인팅으로 화소값 및 가중치들을 보정한다. 보정된 영상으로 배경 모델링을 수행하면 움직임이 적은 영역에 대해서도 효과적으로 배경 모델을 생성 할 수 있다.

  • PDF

Video Monitoring System on Real Time using Object Extraction (실시간 객체추출 영상감시 시스템)

  • Oh, Taek-Hwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.311-314
    • /
    • 2010
  • 실시간 영상에서 객체 추적은 수년간 컴퓨터 비전 및 여러 실용적 응용 분야에서 관심을 가지는 주제 중 하나이다. 하지만 배경영상의 잡음을 객체로 인식하는 오류로 인하여 추출하고자 하는 객체를 찾지 못하는 경우가 있다. 본 논문에서는 실시간 영상에서 적응적 배경영상을 이용하여 객체를 추출하는 방법을 제안한다. 입력되는 영상에서 배경영역의 잡음을 제거하고 조명에 강인한 객체 추출을 위하여 객체영역이 아닌 배경영역 부분을 실시간으로 갱신함으로써 적응적 배경영상을 생성한다. 그리고 배경영상과 카메라로부터 입력되는 입력영상과의 차를 이용하여 객체를 추출한다.

  • PDF

Region Segmentation based on Generating Boundary between Object using Focus of image (이미지 초점을 이용한 객체 간 경계 생성 기반의 영역 분할 기법)

  • Han, Hyeon-Ho;Hong, Yeong-Pyo;Lee, Gang-Seong;Lee, Sang-Hun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.531-534
    • /
    • 2012
  • 본 논문에서는 Active Contour 기반의 영역 분할에서 이미지의 초점값을 이용하여 분할된 영역 사이의 경계를 생성하여 기존의 Active Contour에서 발생할 수 있는 중첩 객체의 동일 객체 인식을 방지하는 기법을 제안한다. Active Contour는 영상에서 객체의 윤곽을 검출하여 윤곽을 기준으로 영상을 분할하지만 중첩되거나 근접한 객체에서의 분할이 정확하게 이루어지지 않아 동일 객체로 인식하는 단점이 있다. 이러한 객체에서의 분할을 위해 영상의 초점값을 이용하여 영상 내에 존재하는 객체의 유사 경계 영역을 생성하고 Active Contour의 결과에 적용하여 경계를 생성한 뒤 초점값 적용으로 인해 생성될 수 있는 홀 영역을 hole filling 과정을 수행하여 보완함으로써 보다 정확한 객체를 추출하였다.

  • PDF