• 제목/요약/키워드: 객체삭제

검색결과 84건 처리시간 0.017초

시공간 정합을 이용한 비디오 시퀀스에서의 가려진 객체의 복원 (Completion of Occluded Objects in a Video Sequence using Spatio-Temporal Matching)

  • 허미경;문재경;박순용
    • 정보처리학회논문지B
    • /
    • 제14B권5호
    • /
    • pp.351-360
    • /
    • 2007
  • 비디오 복원(video completion) 기술은 비디오 영상에서 색상 정보가 없는 픽셀에 적절한 색을 채워 영상을 복원하는 기술이다. 본 논문에서는 움직이는 물체가 서로 교차하는 비디오 영상에서 원하지 않는 물체를 제거하고 이때 발생한 영상 홀(image hole)을 채우는 비디오 복원 기술을 제안한다. 움직이는 카메라에서 획득한 비디오 영상에서 이동하는 두 물체 중 카메라와 가까운 물체를 제거함으로써 가려진 이동물체와 배경에 홀이 발생하게 되고, 이 홀온 다른 프레임들의 정보를 이용하여 채움으로써 새로운 비디오를 생성한다. 입력 영상의 모든 프레임에 대해 각 물체의 중심을 추정하여 물체의 중심을 기준으로 시-공간 볼륨(spatio-temporal volume)을 생성하고, 복셀 매칭(voxel matching)을 통한 시간적 탐색(temporal search)을 수행한 후 두 물체를 분리한다. 가리는 물체 영역으로 판단된 부분을 삭제하고 공간적 탐색(spatial search) 방법을 이용하여 홀을 채워 가려짐이 있는 이동 물체 및 배경을 복원한다. 복원된 영상에서 블렌딩을 통해 솔기(seam)를 제거한다. 비디오카메라로 획득한 두 실영상을 이용하여 실험을 수행한 결과 가려진 물체를 복원한 새로운 비디오 영상을 생성할 수 있었다.

그래프 이론 기반의 클러스터링을 이용한 영상 감시 시스템 시야 내의 출입 영역 검출 (Detection of Entry/Exit Zones for Visual Surveillance System using Graph Theoretic Clustering)

  • 우하용;김경환
    • 전자공학회논문지SC
    • /
    • 제46권6호
    • /
    • pp.1-8
    • /
    • 2009
  • 여러 대의 카메라를 이용한 감시 시스템이 정확하고 효율적으로 동작하기 위하여 카메라 시야 간의 연결 관계를 아는 것이 필수적이다. 카메라들의 연결 관계를 파악하기 위하여 카메라 시야 내의 출입 영역을 검출하는 일이 선행되어야 한다. 본 논문에서는 카메라 시야에서 객체의 등장 및 퇴장으로부터 얻은 데이터에 그래프 이론 기반의 클러스터링(clustering)을 적용하여 시야 내의 출입 영역을 검출하는 방법을 제안한다. 데이터 포인트들 사이의 관계를 조사하여 최소신장트리를 구성하고, 트리의 에지들 중 일관성을 갖지 않는 것들을 삭제하여 well-formed 클러스터를 얻는다. 본 논문에서는 클러스터의 형태를 설명하는 두 가지 특징을 정의하고 이를 클러스터의 분할 조건으로 사용하였다. 실험결과를 통하여 데이터 포인트의 분포가 조밀하지 않은 경우 expectation maximization(EM)에 기반을 둔 방법에 비하여 치안하는 방법이 보다 효과적으로 클러스터링을 수행함을 확인하였다. 또한 EM 기반 방법들에 비하여 안정적인 결과를 얻기 위해 필요한 데이터 포인트의 개수가 적으므로 출입영역에 대한 학습시간을 단축할 수 있다.

IT 업체정보검색시스템에서 동의어 처리 기법

  • 강옥선;이현철;조완섭
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2001년도 춘계학술대회 E-Business 활성화를 위한 첨단 정보기술
    • /
    • pp.105-106
    • /
    • 2001
  • 일반적인 정보 검색은 색인어를 통해 이루어지는데 이런 경우 사용자는 정보를 검색하기 위해 데이터베이스에 저장된 정보들이 가지고 있는 색인어를 정확하게 입력해야 한다. 그러나 일반 사용자가 색인어를 정확하게 입력하기는 어렵고, 특히 찾고자 하는 분야가 전문 분야에서 사용되는 용어일 때는 더욱 그러하다. 이럴 때 시소러스와 같은 지식구조를 이용해서 색인어를 탐색하여 검색의 효율을 높일 수 있다. 최근 들어 정보기술 분야의 연구가 활발함에 따라 정보자로의 생산이 급격히 증가하고 이를 관련 주제 분야의 연구정보로 활용하는 경우가 증가하고 있다. 따라서 IT 분야의 정보를 관리할 수 있는 시스템의 개발이 시급하다. 또한 IT 분야와 같은 전문분야일 때 검색 시스템에서 사용할 용어의 관리에 대한 연구의 필요성이 증가하고 있다. 본 논문에서는 IT분야의 정보를 검색할 수 있는 IT 업체정보검색시스템에서 정보 검색시에 생기는 용어간의 불일치 문제를 해결하고, 각 용어들간의 계층 관계를 나타내어 정보 검색시 검색어의 확장을 도울 수 있는 용어 관리 시스템의 구조를 제안하고 그에 대한 검색 알고리즘을 제시한다. 제안된 구조는 사용자의 검색어에 대한 동의어 관계나 상위어, 하위어 등의 계층 관계를 파악하여 검색의 범위에 추가함으로써 검색 효율을 높일 수 있다. 또한 새로운 용어의 생성이나 삭제와 같은 연산이 발생했을 때 시스템을 동적으로 확장할 수 있도록 구현하였다. 제안된 시스템은 단어간의 계층 구조를 효율적으로 검색하기 위하여 객체-관계형 데이터베이스를 사용하였다. 또한 메모리 상주 DBMS를 사용하여 많은 사용자들이 동시에 접근하는 환경에서도 빠른 검색 성능을 유지할 수 있도록 하였다. 제시된 방법은 정보기술 분야뿐만 아니라 다른 전문용어 분야의 연구로도 그 범위를 확장 할 수 있다.자기자본비용의 조합인 기회자본비용으로 할인함으로써 현재의 기업가치를 구할 수 있기 때문이다. 이처럼 기업이 영업활동이나 투자활동을 통해 현금을 창출하고 소비하는 경향은 해당 비즈니스 모델의 성격을 규정하는 자료도로 이용될 수 있다. 또한 최근 인터넷기업들의 부도가 발생하고 있는데, 기업의 부실원인이 어떤 것이든 사회전체의 생산력의 감소, 실업의 증가, 채권자 및 주주의 부의 감소, 심리적 불안으로 인한 경제활동의 위축, 기업 노하우의 소멸, 대외적 신용도의 하락 등과 같은 사회적·경제적 파급효과는 대단히 크다. 이상과 같은 기업부실의 효과를 고려할 때 부실기업을 미리 예측하는 일종의 조기경보장치를 갖는다는 것은 중요한 일이다. 현금흐름정보를 이용하여 기업의 부실을 예측하면 기업의 부실징후를 파악하는데 그치지 않고 부실의 원인을 파악하고 이에 대한 대응 전략을 수립하며 그 결과를 측정하는데 활용될 수도 있다. 따라서 본 연구에서는 기업의 부도예측 정보 중 현금흐름정보를 통하여 '인터넷기업의 미래 현금흐름측정, 부도예측신호효과, 부실원인파악, 비즈니스 모델의 성격규정 등을 할 수 있는가'를 검증하려고 한다. 협력체계 확립, ${\circled}3$ 전문인력 확보 및 인력구성 조정, 그리고 ${\circled}4$ 방문보건사업의 강화 등이다., 대사(代謝)와 관계(關係)있음을 시사(示唆)해 주고 있다.ble nutrient (TDN) was highest in booting stage (59.7%); however no significant difference was found among other stages. The concentrations of Ca and P were not different among mature stages. Accordi

  • PDF

딥러닝과 그래프 모델을 활용한 고해상도 영상의 건물 변화탐지 (Building change detection in high spatial resolution images using deep learning and graph model)

  • 박슬아;송아람
    • 한국측량학회지
    • /
    • 제40권3호
    • /
    • pp.227-237
    • /
    • 2022
  • 다시기 고해상도 영상에 존재하는 건물의 위치 및 형태학적 왜곡은 건물의 변화탐지를 어렵게 만드는 요인 중 하나이다. 이를 해결하기 위하여 부가적인 3차원 지형정보 및 딥러닝을 활용한 연구가 수행되고 있지만, 실제 사례에 적용되기 어려운 한계가 있다. 본 연구에서는 건물의 효율적인 변화탐지를 수행하기 위하여, 건물의 위치 정보뿐만 아니라 건물 간 위상정보를 활용하는 방안을 제시한다. 다양한 비연직 영상에서의 건물을 학습하기 위하여 SpaceNet v2 데이터셋을 사용하여 Mask R-CNN (Region-based Convolutional Neural Network)을 학습하였으며, 건물 객체를 탐지하여 중심점을 노드로 추출하였다. 추출한 건물 노드를 중심으로 서로 다른 두 시기에 대해 각각 TIN (Triangulated Irregular Network) 그래프들을 형성하고, 두 그래프 간 구조적 차이가 발생한 영역에 기반하여 변화 건물을 추출하기 위해 그래프 유사도와 노드의 위치 차이를 반영한 변화 지수를 제안하였다. 최종적으로 변화 지숫값을 기반으로 두 그래프 간 비교를 통해 새롭게 생성되거나 삭제된 건물을 탐지하였다. 총 3쌍의 테스트 영역에 대해 제안한 기법을 적용한 결과, 건물들 간 연결성의 변화를 고려함으로써 기복 변위에 의해 서로 다른 시기간 동일 건물 쌍을 판단하기 어려운 경우에도 변화가 발생한 건물을 적절하게 탐지하는 것을 확인할 수 있었다.