• 제목/요약/키워드: 객체매칭

검색결과 184건 처리시간 0.022초

Lab 블록 매칭을 이용한 객체 탐색 및 타겟팅 (Object Detection & Targeting with Lab Block Matching)

  • 이정아;최철;최영관;박장춘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.727-730
    • /
    • 2004
  • 영상은 복잡한 객체들의 집합으로 이루어져 있기 때문에 영상에 포함된 객체를 분리하는 일은 컴퓨터 비전이나 인식 등 많은 분야에서 중요시 된다. 영상 처리 측면에서 객체를 분할하기 위해서 색상, 모양, 질감, 움직임 등 다양한 기법들이 이용되고 있다. 본 논문에서는 정확한 색상의 비교를 위해서 CIE 색상 모델을 이용하고 있으며 이것을 기반으로 객체를 추출하고 있다. 그리고 추출된 객체의 해석과 검증을 위해서 모양 기반의 분석법을 이용하고 있다. 본 논문에서는 Pan/Tilt 카메라의 타겟팅(Targeting)과 포커싱(Focusing)을 위해 영상 내에 포함되어진 객체를 검출하기 위한 방법론을 제안하고자 한다. 객체를 인식하기 위해 CIE 색상 모델을 이용한 색상 매칭 기법을 제안하고 있다. 색상의 분포를 파악하기 위해서 CIE 모델이 생성해내는 Lab 블록을 통계적인 방법으로 분석한다. 그리고 분석된 결과는 CIE 블록 매칭(Bock Matching) 기법의 기준이 되며 이것을 이용해서 후보 객체 영역(Candidate Object Area)을 추출하게 된다. 추출된 후보 객체 영역을 검증하기 위해서 모멘트를 이용한 모양 기반의 분석을 활용하고 있다.

  • PDF

영역 기반 이미지 검색을 위한 영역 매칭 방법에 관한 연구 (A Study on Region matching method for Region-based Image Retrieval)

  • 추연웅;최기호
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 추계학술발표논문집
    • /
    • pp.155-158
    • /
    • 2002
  • 본 논문은 영역기반의 영상 검색을 위해 향상된 영역 매칭 알고리즘을 구현하고자 한다. 최근의 Mpeg-7표준은 객체 기반의 영상처리를 특징으로 하고 있으며, 객체 기반의 영상 처리방법들에서 가장 대표적인 방법인 영역기반 검색 방법은 영역 분할과 특징 추출, 그리고 영역매칭을 통한 유사도 측정에 따른 검색으로 나뉘어 진다. 본 논문에서는 영상을 분할한 후 분할된 영역들에 대한 특징을 추출 하고, 추출된 특징들을 다차원 특징 공간에서의 클러스터로 구성한다. 그리고 구성된 클러스터들을 인접한 중심을 가진 특징 그룹화 하여 특징 그룹 중심간의 거리차를 이용하여 질의 이미지와 검색 이미지의 유사도를 측정하는 영역 매칭 방법을 제안한다.

  • PDF

SOSiM: 형태 특징 기술자를 사용한 형태 기반 객체 유사성 매칭 (SOSiM: Shape-based Object Similarity Matching using Shape Feature Descriptors)

  • 노충호;이석룡;정진완;김상희;김덕환
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권2호
    • /
    • pp.73-83
    • /
    • 2009
  • 본 논문에서는 영상 내의 객체의 형태(shape)에 기반한 객체 유사성 매칭(matching) 방법을 제안한다. 제안한 방법에서는 객체의 윤곽선(edge)에서 점들(edge points)을 추출하고, 추출된 점들의 위치 관계를 나타내기 위하여 각 점을 기준으로 로그 원형 히스토그램(log polar histogram)을 생성하였다. 객체의 윤곽을 따라가며 각 점에 대한 원형 히스토그램을 순차적으로 비교함으로써 객체간의 매칭이 이루어지며, 데이타베이스로부터 유사한 객체를 검색하기 위하여 사용한 매칭 방식은 널리 알려진 k-NN(nearest neighbor) 질의 방식을 사용하였다. 제안한 방법을 검증하기 위하여 기존의 형태 문맥 기법(Shape Context method)과 제안한 방법을 비교하였으며, 객체 유사성 매칭 실험에서 k=5일 때 기존 방법의 정확도가 0.37, 제안한 방법이 0.75-0.90이며, k=10일 때 기존 방법이 0.31, 제안한 방법이 0.61-0.80로서 기존의 방법에 비해 정확한 매칭 결과를 보여 주었다. 또한 영상의 회전 변형 실험에서 기존 방법의 정확도가 0.30, 제안한 방법이 0.69로서 기존 방법보다 회전 변형에 강인한(robust) 특성을 가짐을 관찰할 수 있었다.

물체 겹침 상황에 강인한 인공수정체 삽입 영역 추적 방법 (Tracking Method of Intraocular Lens Insertion Region for Overlapped Image)

  • 길기범;오현주;위즈빈;김승호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2012년도 제45차 동계학술발표논문집 20권1호
    • /
    • pp.55-58
    • /
    • 2012
  • 백내장 수술에서 인공수정체 삽입영역을 표시하고 제어하는 것은 매우 중요하다. 수술시 발생하는 삽입영역 제어의 오차는 시력의 저하를 가져온다. 이를 위해 디지털 이미지 프로세싱을 이용한 많은 추적 방법이 연구 중에 있다. 그 중에서 템플릿 매칭은 실시간성이 뛰어난 객체 추적 방법으로 인공수정체 삽입 영역 추적 방법으로 사용 될 수 있다. 그러나 템플릿 매칭 방법은 입력 영상과 템플릿 영역의 상관관계만을 따지며 추적하기 때문에 추적 할 객체의 물체 겹침 상황이 발생하면 정확한 추적이 불가능하다. 본 논문에서는 템플릿 매칭 방법을 이용하여 인공수정체 삽입 영역을 추적하고 특정 영역의 버퍼들을 사용하여 물체 겹침 상황을 해결하고자 한다.

  • PDF

이종의 공간 데이터 셋의 면 객체 자동 매칭 방법 (Automated Areal Feature Matching in Different Spatial Data-sets)

  • 김지영;이재빈
    • 대한공간정보학회지
    • /
    • 제24권1호
    • /
    • pp.89-98
    • /
    • 2016
  • 본 연구에서는 축척과 갱신 주기가 상이한 이종의 공간 데이터 셋을 융합하기 위하여 사용자의 개입을 최소화하면서 다대다 관계에도 적용이 가능한 기하학적 방법론 기반의 면 객체 자동 매칭 방법을 제안하였다. 이를 위하여 첫째, 포함함수가 0.4 이상인 객체(노드)는 인접행렬에서 에지로 연결되었고, 이들 인접행렬의 곱을 반복적으로 수행하여 다대다 관계를 포함하는 후보 매칭 쌍을 선정하였다. 다대다 관계인 면 객체들은 알고리즘으로 생성된 convex hull로 단일 면 객체로 변환하였다. 기하학적 매칭을 위하여, 매칭 기준을 설정하고, 이들을 유사도 함수를 이용하여 유사도를 계산하였다. 다음으로 변환된 유사도와 CRITIC 방법으로 도출된 가중치를 선형 조합하여 형상 유사도를 계산하였다. 마지막으로 훈련자료에서 모든 가중치에 대한 정확도와 재현율을 나타낸 PR 곡선의 교차점인 EER로 임계값을 선정하고, 이 임계값을 기준으로 매칭 유무를 판별하였다. 제안된 방법을 수치지도와 도로명 주소기본도에 적용한 결과, 일부 다대다 관계에서 잘못 매칭되는 경우를 시각적으로 확인할 수 있었으나, 통계적 평가에서 정확도, 재현율, F-measure가 각각 0.951, 0.906, 0.928로 높게 나타났다. 이는 제안된 방법으로 이종의 공간 데이터 셋을 자동으로 매칭하는데 그 정확도가 높음을 의미한다. 그러나 일부 오류가 발생한 다대다 관계인 후보 매칭 쌍을 정확하게 정량화하기 위해서 포함함수나 매칭 기준에 대한 연구가 진행되어야 할 것이다.

CRITIC 방법을 이용한 형상유사도 기반의 면 객체 자동매칭 방법 (A new method for automatic areal feature matching based on shape similarity using CRITIC method)

  • 김지영;허용;김대성;유기윤
    • 한국측량학회지
    • /
    • 제29권2호
    • /
    • pp.113-121
    • /
    • 2011
  • 본 연구에서는 기하학적 정보를 바탕으로 생성된 유사도 기반의 면 객체 자동매칭 방법을 제안하였다. 이를 위하여 서로 다른 공간자료에서 교차되는 후보 매칭 쌍을 추출하고, CRITIC방법을 이용하여 연동 기준별 가중치를 자동으로 생성하여 선형조합으로 추출된 후보매칭 쌍 간의 형상유사도를 측정하였다. 이때, 훈련자료에서 조정된 상자도표의 특이점 탐색을 적용하여 도출된 임계값 이상인 경우가 매칭 쌍으로 탐색된다. 제안된 방법을 이종의 공간자료(수지치도 2.0과 도로명주소 기본도)의 일부지역에 적용한 결과, 시각적으로 형상이 유사하고 교차되는 면적이 넓은 건물객체가 매칭 되었으며, 통계적으로 F-Measure가 0.932로 높게 나타났다.

로봇의 자율 항해를 위한 비전기반의 객체 인식 (Vision based Object Recognition for Autonomous Robot Navigation)

  • 김권;이창우;쉬수단;최요환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제38차 하계학술발표논문집 16권1호
    • /
    • pp.205-209
    • /
    • 2008
  • 본 논문은 입력되는 영상에서 특정 객체를 찾기 위하여 특징 검출 및 매칭 결과를 분석하여 기술한다. 영상의 특징을 추출하는 방법 중 코너를 특징으로 하는 방법인 해리스 코너 검출(Harris corner detection)을 이용하여 코너를 추출하였으며, 추출한 특징을 이용하여 다양한 크기의 템플릿을 만들어 입력된 영상과 상관계수를 구해 최대값을 가지는 위치를 찾아 입력된 영상과 객체를 매칭 시킨 결과를 분석하였다. 본 논문의 연구 결과들은 객체의 탐지 등과 같은 영상 분석 기반 기술에 활용될 수 있으리라 기대된다.

  • PDF

AR환경에서 특징 포인트를 효율적으로 매칭하기 위한 실린더 기반의 각도 보간 (Cylinder-based Angular Interpolation to Efficiently Feature Point Matching in AR Environment)

  • 문예린;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.365-368
    • /
    • 2022
  • 본 논문에서는 가상 물체를 현실과 오차 없이 정확하게 증강 시켜야 하는 상황에서 특징 포인트를 이용하여 효율적으로 매칭하기 위한 실린더 기반의 각도 보간 기법을 제안한다. 증강현실에서 활용되는 대표적인 객체를 증강하는 방법은 특징 포인트들을 트래킹하여 찾아낸 후, RANSAC 알고리즘을 기반으로 포인트 셋에서 바닥, 벽과 같이 하나의 평면을 구성하고 그 위에 객체를 증강한다. 이 방법은 평면을 이용하기 때문에 계산량이 적지만, 증강 위치에 대한 오차가 존재하기 때문에 때때로 잘못된 위치에 객체가 배치되는 경우가 발생한다. 특히, 의료시설, 도로 공사에서 증강 현실을 사용했을 때에 증강된 가상물체의 위치, 크기 등이 현실에서 작은 오차라도 어긋날 경우 크게 사고가 발생할 수 있다. 본 논문에서는 평면 생성 없이 특징 포인트만을 이용하여 효율적으로 매칭 할 수 있는 실린더 기반의 각도 보간을 이용하여 정확하게 객체를 증강할 수 있는 결과를 보여준다.

  • PDF

효과적인 다중 차량 추적을 위한 객체 특징 추출 및 매칭 (Object Feature Extraction and Matching for Effective Multiple Vehicles Tracking)

  • 조두형;이석룡
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권11호
    • /
    • pp.789-794
    • /
    • 2013
  • 차량 추적 시스템(vehicle tracking system)은 교통 흐름 파악, 차량 감시, 사고 감지 등을 통하여 교통 정체에 따른 차량의 이동 경로를 유도할 수 있고, 교통사고를 사전에 방지할 수 있게 하는 시스템이다. 효과적인 차량 추적을 위해서는 먼저 연속된 영상 내의 각 객체의 특징 값을 추출하여 영상 내에 존재하는 차량 객체를 인지할 수 있어야 한다. 다음으로, 검출된 다중 객체에 대하여 영상 간 객체 매칭을 통해 연속된 프레임에 걸쳐 출현하는 동일한 차량을 인식함으로써 각 차량의 움직임을 추적할 수 있다. 본 논문에서는 차 영상의 이진화 및 레이블링(labeling)을 통하여 객체를 검출하고, 검출한 객체의 최소 외접 직사각형(minimum bounding rectangle: MBR)의 중심 좌표와 이 MBR의 가로, 세로 방향에 대한 라인(line)별 1D FFT(fast Fourier transform) 변환 결과의 평균 계수 값을 계산하여 객체의 특징 값을 구한다. 다음으로, 연속된 프레임에 걸쳐 출현하는 객체들 중 유사도가 가장 높은 객체 쌍을 동일한 객체로 인식하여 객체를 추적하는 방법을 제안한다. 실험 결과, 제안한 방법은 객체의 기하학적 특성에 기초한 기존 방법들에 비하여 정확한 추적이 가능함을 보여주었다.

내용기반 검색을 위한 분할된 영상객체간 유사도 판별 (Computing Similarities between Segmented Objects in the image for Content-Based Retrieval)

  • 유헌우;장동식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.358-360
    • /
    • 2001
  • 본 논문에서는 내용기반 영상검색중 객체기반검색 방법에 대해 다룬다. 먼저 색상과 질감정보가 동일한 영역을 VQ알고리즘을 이용해 군집화 함으로써 동일한 영역을 추출하는 새로운 영상분할기법을 제안하고, 분할 후에 분할에 사용된 색상과 질감정보, 객체간의 위치정보와 영역크기정보를 가지고 객체간 유사도를 판별하여 영상을 검색한다. 이 때 사용되는 색상의 범위의 몇 개의 주요한 색상으로 표시하기 위해 색상테이블을 사용하고 인간의 인지도에 의해 다시 그룹화 함으로써 계산량과 데이터저장의 효율성을 높인다. 영상검색시에는 질의 영상의 관심객체와 비교대상이 되는 데이터베이스 영상의 여러 객체와의 유사성을 판단하여 영상간의 유사도를 계산하는 일대다 매칭 방법(One Object to Multi Objects Matching)과 질의 영상의 여러 객체와 데이터베이스영상의 여러 객체간의 유사도를 판단하는 다대다 매칭 방법(Multi Objects to Multi Objects Matching)을 제안한다. 또한, 제안된 시스템은 고속검색을 실현하기 위해 주요한 색상값을 키(key)색인화 해서 일치가능성이 없는 영상들은 1차적으로 제거함으로써 검색시간을 줄일 수 있도록 했다.

  • PDF