영상은 복잡한 객체들의 집합으로 이루어져 있기 때문에 영상에 포함된 객체를 분리하는 일은 컴퓨터 비전이나 인식 등 많은 분야에서 중요시 된다. 영상 처리 측면에서 객체를 분할하기 위해서 색상, 모양, 질감, 움직임 등 다양한 기법들이 이용되고 있다. 본 논문에서는 정확한 색상의 비교를 위해서 CIE 색상 모델을 이용하고 있으며 이것을 기반으로 객체를 추출하고 있다. 그리고 추출된 객체의 해석과 검증을 위해서 모양 기반의 분석법을 이용하고 있다. 본 논문에서는 Pan/Tilt 카메라의 타겟팅(Targeting)과 포커싱(Focusing)을 위해 영상 내에 포함되어진 객체를 검출하기 위한 방법론을 제안하고자 한다. 객체를 인식하기 위해 CIE 색상 모델을 이용한 색상 매칭 기법을 제안하고 있다. 색상의 분포를 파악하기 위해서 CIE 모델이 생성해내는 Lab 블록을 통계적인 방법으로 분석한다. 그리고 분석된 결과는 CIE 블록 매칭(Bock Matching) 기법의 기준이 되며 이것을 이용해서 후보 객체 영역(Candidate Object Area)을 추출하게 된다. 추출된 후보 객체 영역을 검증하기 위해서 모멘트를 이용한 모양 기반의 분석을 활용하고 있다.
본 논문은 영역기반의 영상 검색을 위해 향상된 영역 매칭 알고리즘을 구현하고자 한다. 최근의 Mpeg-7표준은 객체 기반의 영상처리를 특징으로 하고 있으며, 객체 기반의 영상 처리방법들에서 가장 대표적인 방법인 영역기반 검색 방법은 영역 분할과 특징 추출, 그리고 영역매칭을 통한 유사도 측정에 따른 검색으로 나뉘어 진다. 본 논문에서는 영상을 분할한 후 분할된 영역들에 대한 특징을 추출 하고, 추출된 특징들을 다차원 특징 공간에서의 클러스터로 구성한다. 그리고 구성된 클러스터들을 인접한 중심을 가진 특징 그룹화 하여 특징 그룹 중심간의 거리차를 이용하여 질의 이미지와 검색 이미지의 유사도를 측정하는 영역 매칭 방법을 제안한다.
본 논문에서는 영상 내의 객체의 형태(shape)에 기반한 객체 유사성 매칭(matching) 방법을 제안한다. 제안한 방법에서는 객체의 윤곽선(edge)에서 점들(edge points)을 추출하고, 추출된 점들의 위치 관계를 나타내기 위하여 각 점을 기준으로 로그 원형 히스토그램(log polar histogram)을 생성하였다. 객체의 윤곽을 따라가며 각 점에 대한 원형 히스토그램을 순차적으로 비교함으로써 객체간의 매칭이 이루어지며, 데이타베이스로부터 유사한 객체를 검색하기 위하여 사용한 매칭 방식은 널리 알려진 k-NN(nearest neighbor) 질의 방식을 사용하였다. 제안한 방법을 검증하기 위하여 기존의 형태 문맥 기법(Shape Context method)과 제안한 방법을 비교하였으며, 객체 유사성 매칭 실험에서 k=5일 때 기존 방법의 정확도가 0.37, 제안한 방법이 0.75-0.90이며, k=10일 때 기존 방법이 0.31, 제안한 방법이 0.61-0.80로서 기존의 방법에 비해 정확한 매칭 결과를 보여 주었다. 또한 영상의 회전 변형 실험에서 기존 방법의 정확도가 0.30, 제안한 방법이 0.69로서 기존 방법보다 회전 변형에 강인한(robust) 특성을 가짐을 관찰할 수 있었다.
백내장 수술에서 인공수정체 삽입영역을 표시하고 제어하는 것은 매우 중요하다. 수술시 발생하는 삽입영역 제어의 오차는 시력의 저하를 가져온다. 이를 위해 디지털 이미지 프로세싱을 이용한 많은 추적 방법이 연구 중에 있다. 그 중에서 템플릿 매칭은 실시간성이 뛰어난 객체 추적 방법으로 인공수정체 삽입 영역 추적 방법으로 사용 될 수 있다. 그러나 템플릿 매칭 방법은 입력 영상과 템플릿 영역의 상관관계만을 따지며 추적하기 때문에 추적 할 객체의 물체 겹침 상황이 발생하면 정확한 추적이 불가능하다. 본 논문에서는 템플릿 매칭 방법을 이용하여 인공수정체 삽입 영역을 추적하고 특정 영역의 버퍼들을 사용하여 물체 겹침 상황을 해결하고자 한다.
본 연구에서는 축척과 갱신 주기가 상이한 이종의 공간 데이터 셋을 융합하기 위하여 사용자의 개입을 최소화하면서 다대다 관계에도 적용이 가능한 기하학적 방법론 기반의 면 객체 자동 매칭 방법을 제안하였다. 이를 위하여 첫째, 포함함수가 0.4 이상인 객체(노드)는 인접행렬에서 에지로 연결되었고, 이들 인접행렬의 곱을 반복적으로 수행하여 다대다 관계를 포함하는 후보 매칭 쌍을 선정하였다. 다대다 관계인 면 객체들은 알고리즘으로 생성된 convex hull로 단일 면 객체로 변환하였다. 기하학적 매칭을 위하여, 매칭 기준을 설정하고, 이들을 유사도 함수를 이용하여 유사도를 계산하였다. 다음으로 변환된 유사도와 CRITIC 방법으로 도출된 가중치를 선형 조합하여 형상 유사도를 계산하였다. 마지막으로 훈련자료에서 모든 가중치에 대한 정확도와 재현율을 나타낸 PR 곡선의 교차점인 EER로 임계값을 선정하고, 이 임계값을 기준으로 매칭 유무를 판별하였다. 제안된 방법을 수치지도와 도로명 주소기본도에 적용한 결과, 일부 다대다 관계에서 잘못 매칭되는 경우를 시각적으로 확인할 수 있었으나, 통계적 평가에서 정확도, 재현율, F-measure가 각각 0.951, 0.906, 0.928로 높게 나타났다. 이는 제안된 방법으로 이종의 공간 데이터 셋을 자동으로 매칭하는데 그 정확도가 높음을 의미한다. 그러나 일부 오류가 발생한 다대다 관계인 후보 매칭 쌍을 정확하게 정량화하기 위해서 포함함수나 매칭 기준에 대한 연구가 진행되어야 할 것이다.
본 연구에서는 기하학적 정보를 바탕으로 생성된 유사도 기반의 면 객체 자동매칭 방법을 제안하였다. 이를 위하여 서로 다른 공간자료에서 교차되는 후보 매칭 쌍을 추출하고, CRITIC방법을 이용하여 연동 기준별 가중치를 자동으로 생성하여 선형조합으로 추출된 후보매칭 쌍 간의 형상유사도를 측정하였다. 이때, 훈련자료에서 조정된 상자도표의 특이점 탐색을 적용하여 도출된 임계값 이상인 경우가 매칭 쌍으로 탐색된다. 제안된 방법을 이종의 공간자료(수지치도 2.0과 도로명주소 기본도)의 일부지역에 적용한 결과, 시각적으로 형상이 유사하고 교차되는 면적이 넓은 건물객체가 매칭 되었으며, 통계적으로 F-Measure가 0.932로 높게 나타났다.
본 논문은 입력되는 영상에서 특정 객체를 찾기 위하여 특징 검출 및 매칭 결과를 분석하여 기술한다. 영상의 특징을 추출하는 방법 중 코너를 특징으로 하는 방법인 해리스 코너 검출(Harris corner detection)을 이용하여 코너를 추출하였으며, 추출한 특징을 이용하여 다양한 크기의 템플릿을 만들어 입력된 영상과 상관계수를 구해 최대값을 가지는 위치를 찾아 입력된 영상과 객체를 매칭 시킨 결과를 분석하였다. 본 논문의 연구 결과들은 객체의 탐지 등과 같은 영상 분석 기반 기술에 활용될 수 있으리라 기대된다.
본 논문에서는 가상 물체를 현실과 오차 없이 정확하게 증강 시켜야 하는 상황에서 특징 포인트를 이용하여 효율적으로 매칭하기 위한 실린더 기반의 각도 보간 기법을 제안한다. 증강현실에서 활용되는 대표적인 객체를 증강하는 방법은 특징 포인트들을 트래킹하여 찾아낸 후, RANSAC 알고리즘을 기반으로 포인트 셋에서 바닥, 벽과 같이 하나의 평면을 구성하고 그 위에 객체를 증강한다. 이 방법은 평면을 이용하기 때문에 계산량이 적지만, 증강 위치에 대한 오차가 존재하기 때문에 때때로 잘못된 위치에 객체가 배치되는 경우가 발생한다. 특히, 의료시설, 도로 공사에서 증강 현실을 사용했을 때에 증강된 가상물체의 위치, 크기 등이 현실에서 작은 오차라도 어긋날 경우 크게 사고가 발생할 수 있다. 본 논문에서는 평면 생성 없이 특징 포인트만을 이용하여 효율적으로 매칭 할 수 있는 실린더 기반의 각도 보간을 이용하여 정확하게 객체를 증강할 수 있는 결과를 보여준다.
차량 추적 시스템(vehicle tracking system)은 교통 흐름 파악, 차량 감시, 사고 감지 등을 통하여 교통 정체에 따른 차량의 이동 경로를 유도할 수 있고, 교통사고를 사전에 방지할 수 있게 하는 시스템이다. 효과적인 차량 추적을 위해서는 먼저 연속된 영상 내의 각 객체의 특징 값을 추출하여 영상 내에 존재하는 차량 객체를 인지할 수 있어야 한다. 다음으로, 검출된 다중 객체에 대하여 영상 간 객체 매칭을 통해 연속된 프레임에 걸쳐 출현하는 동일한 차량을 인식함으로써 각 차량의 움직임을 추적할 수 있다. 본 논문에서는 차 영상의 이진화 및 레이블링(labeling)을 통하여 객체를 검출하고, 검출한 객체의 최소 외접 직사각형(minimum bounding rectangle: MBR)의 중심 좌표와 이 MBR의 가로, 세로 방향에 대한 라인(line)별 1D FFT(fast Fourier transform) 변환 결과의 평균 계수 값을 계산하여 객체의 특징 값을 구한다. 다음으로, 연속된 프레임에 걸쳐 출현하는 객체들 중 유사도가 가장 높은 객체 쌍을 동일한 객체로 인식하여 객체를 추적하는 방법을 제안한다. 실험 결과, 제안한 방법은 객체의 기하학적 특성에 기초한 기존 방법들에 비하여 정확한 추적이 가능함을 보여주었다.
본 논문에서는 내용기반 영상검색중 객체기반검색 방법에 대해 다룬다. 먼저 색상과 질감정보가 동일한 영역을 VQ알고리즘을 이용해 군집화 함으로써 동일한 영역을 추출하는 새로운 영상분할기법을 제안하고, 분할 후에 분할에 사용된 색상과 질감정보, 객체간의 위치정보와 영역크기정보를 가지고 객체간 유사도를 판별하여 영상을 검색한다. 이 때 사용되는 색상의 범위의 몇 개의 주요한 색상으로 표시하기 위해 색상테이블을 사용하고 인간의 인지도에 의해 다시 그룹화 함으로써 계산량과 데이터저장의 효율성을 높인다. 영상검색시에는 질의 영상의 관심객체와 비교대상이 되는 데이터베이스 영상의 여러 객체와의 유사성을 판단하여 영상간의 유사도를 계산하는 일대다 매칭 방법(One Object to Multi Objects Matching)과 질의 영상의 여러 객체와 데이터베이스영상의 여러 객체간의 유사도를 판단하는 다대다 매칭 방법(Multi Objects to Multi Objects Matching)을 제안한다. 또한, 제안된 시스템은 고속검색을 실현하기 위해 주요한 색상값을 키(key)색인화 해서 일치가능성이 없는 영상들은 1차적으로 제거함으로써 검색시간을 줄일 수 있도록 했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.