This paper proposes a detection system that, by determining whether a dangerous act is being carried out among other pedestrians in the images captured using CCTV, provides pre-warnings and establishes emergency measures. To determine the presence of a dangerous act, after setting zones of interest and danger zones within those zones of interest, the danger level is determined in accordance with the range of encroachment upon detecting an object. Especially, this research aims at detecting a suicide jump from the bridge and extends to detecting a dangerous act among pedestrians from detecting a dangerous act of only one person with no one in the previous research. This system classifies the status into 3 levels as safe, alert, and danger according to the amount of part being over the bridge railing. If a situation is deemed as warning-worthy and emergency, the integrated control center is immediately alerted to facilitate prevention in advance.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.3
/
pp.551-562
/
2024
This study relates to a method and device for extracting and tracking moving objects. In particular, objects are extracted using different images between adjacent images, and the location information of the extracted object is continuously transmitted to provide accurate location information of at least one moving object. It relates to a method and device for extracting and tracking moving objects based on tracking moving objects. People tracking, which started as an expression of the interaction between people and computers, is used in many application fields such as robot learning, object counting, and surveillance systems. In particular, in the field of security systems, cameras are used to recognize and track people to automatically detect illegal activities. The importance of developing a surveillance system, that can detect, is increasing day by day.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.222-223
/
2016
보행자 인식을 위한 컴퓨터 비전 알고리즘은 야간 상황과 같이 저조도 환경에서는 인식 성능이 떨어지고 있다. 이로 인하여 최근 저조도 환경에서 촬영된 영상으로 야간 상황에서 객체 인식 성능을 높이는 기법들이 연구되고 있다. 야간 환경은 주간 환경과는 다르게 광량이 적기 때문에 인간의 시각으로도 객체 인식에 어려움이 있고 일반적인 카메라로 촬영된 영상으로 객체 인식이 어렵다. 최근에는 NIR 카메라를 이용하여 촬영된 영상으로 야간 보행자 인식 알고리즘이 개발되고 있으나, 인식률과 객체 인식 가능 거리 및 범위가 한정적이다. 또한 기존의 야간 보행자 검출 기법들은 방대한 연산량이 필요하기 때문에 실시간 객체 인식이 불가능하다. 본 논문에서는 NIR 카메라로부터 촬영된 영상으로 preprocessing 후 ACF(Aggregated Channel Feature)를 이용하여 최근 연구되고 있는 카메라 움직임이 있는 야간 환경에서 보행자 인식 알고리즘을 PC 및 TK1 Board 환경에서 구현하고 객체 인식률을 높인다.
본고에서는 지능형 국방 감시시스템에 적용할 수 있는 핵심 기술인 PTZ(Pan-Tilt-Zoom) 네트워크 카메라를 이용한 액티브 객체 추적 및 객체 특성 분석 기법을 소개한다. 본고에서 소개하는 기법은 기존의 적응적 배경 모델링 기반의 객체 검출에서 발생하는 고스트 현상을 제거하고 정지객체를 안정적으로 추적할 수 있는 방법과 PTZ 카메라의 Panning, Tilting, Zooming을 통하여 카메라의 FOV를 지속적으로 추적하기 위한 카메라 이동 위치 예측 알고리즘을 포함하고 있다. 본고에서는 또한, 지능형 감시시스템의 한 종류로서 일반인이 통행할 수 있는 구역에서 출입자의 의상 특성을 분석하여 비인증 출입자를 검출하는 방법과 추적하는 객체가 차량일 경우, 차량의 종류를 자동 분류하는 기법을 소개한다.
본 논문에서는 지능형 인식 기술인 RBFNNs 패턴분류기와 추적 기법인 Particle Filter를 융합한 다중 객체 추적 시스템을 설계한다. 여러 객체가 동시에 존재하는 상황에서 각각의 객체를 개별적으로 추적하기 위해 추적 기법에 인식 알고리즘을 추가하였다. 학습 데이터는 다양한 상황에서 정확한 인식 결과를 확인하기 위해 정면, 좌, 우측 데이터를 사용하였으며, 테스트 영상에서 검출된 얼굴 이미지를 테스트 데이터로 사용하였다. 추적 알고리즘인 Particle Filter를 사용하여 검출된 객체의 추적을 수행하며, 인식 결과를 바탕으로 다양한 객체에 대하여 개별적인 추적을 수행한다.
Proceedings of the Korea Information Processing Society Conference
/
2016.10a
/
pp.653-654
/
2016
기계학습 기술의 발전으로 인해 다양한 분야에서 객체를 자동으로 인식하고 그 행동을 분석하는 연구의 필요성이 대두되고 있으며, 이는 스포츠 분야도 마찬가지이다. 현재 스포츠 경기내의 다중객체를 검출하고 추적하는 시스템은 정확성이 높지 않아 대부분의 서비스가 숙련된 오퍼레이터의 수작업에 의존하고 있어 객체의 위치를 검출하고 이를 실시간으로 정확하게 추적할 수 있는 기술의 개발이 필요하다. 본 논문에서는 기존 알고려즘을 다중객체 추적에 적합하도록 구현하고 성능을 비교한 결과를 제시하여 스포츠 경기 내의 다중객체 추적에 적합한 알고리즘을 제안하고자 한다.
Journal of the Korea Society of Computer and Information
/
v.16
no.6
/
pp.89-97
/
2011
When examining current process of object tracking and search, objects were tracked by extracting them from image that was inputted through fixed single camera and objects were recognized through Zoom function to know detailed information on objects tracked. This study proposed system that expresses information on area that can seek and recognize object tracked as augmented reality by recognizing and seeking object by using multi camera. The result of experiment on proposed system showed that the number of pixels that was included in calculation was remarkably reduced and recognition rate of object was enhanced and time that took to identify information was shortened. Compared with existing methods, this system has advantage of better accuracy that can detect the motion of object and advantage of shortening time that took to detect motion.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.667-670
/
2020
최근에는 증강현실, 로봇공학 등의 분야에서 객체의 위치 검출 이외에도, 객체의 자세에 대한 추정이 요구되고 있다. 객체의 자세 정보가 포함된 데이터셋은 위치 정보만 포함된 데이터셋에 비하여 상대적으로 매우 적기 때문에 인공 신경망 구조를 활용하기 어려운 측면이 있으나, 최근에 들어서는 기계학습 기반의 자세 추정 알고리즘들이 여럿 등장하고 있다. 본 논문에서는 이 가운데 Dense 6d Pose Object detector (DPOD) [11]의 구조를 기반으로 하여 가구의 조립 설명서에 그려진 가구 부품들의 자세를 추정하고자 한다. DPOD [11]는 입력으로 RGB 영상을 받으며, 해당 영상에서 자세를 추정하고자 하는 객체의 영역에 해당하는 픽셀들을 추정하고, 객체의 영역에 해당되는 각 픽셀에서 해당 객체의 3D 모델의 UV map 값을 추정한다. 이렇게 픽셀 개수만큼의 2D - 3D 대응이 생성된 이후에는, RANSAC과 PnP 알고리즘을 통해 RGB 영상에서의 객체와 객체의 3D 모델 간의 변환 관계 행렬이 구해지게 된다. 본 논문에서는 사전에 정해진 24개의 자세 후보들을 기반으로 가구 부품의 3D 모델을 2D에 투영한 RGB 영상들로 인공 신경망을 학습하였으며, 평가 시에는 실제 조립 설명서에서의 가구 부품의 자세를 추정하였다. 실험 결과 IKEA의 Stefan 의자 조립 설명서에 대하여 100%의 ADD score를 얻었으며, 추정 자세가 자세 후보군 중 정답 자세에 가장 근접한 경우를 정답으로 평가했을 때 100%의 정답률을 얻었다. 제안하는 신경망을 사용하였을 때, 가구 조립 설명서에서 가구 부품의 위치를 찾는 객체 검출기(object detection network)와, 각 개체의 종류를 구분하는 객체 리트리벌 네트워크(retrieval network)를 함께 사용하여 최종적으로 가구 부품의 자세를 추정할 수 있다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.435-438
/
2007
움직이는 객체를 검출하기 위해서 정확한 배경을 사용하기 위해 널리 사용되는 방법으로는 가우시안 혼합 모델이다. 가우시안 혼합 모텔은 확률적 학습 방법을 사용하는데, 이 방법은 움직이는 배경일 경우와 이동하던 물체가 정지하는 경우 배경을 정확히 모델링하지 못한다. 본 논문에서는 확률적 모델링을 통해 혼잡한 배경을 모델링하고 객체의 계층적 처리를 통해 보다 정확한 배경으로 갱신할 수 있는 학습 방법을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.589-591
/
2002
본 연구에서는 영상안에서의 중요한 객체정보를 검출하기 위한 전처리 과정으로 효율적인 색상정보 정규화에 의한 영역분석 방법을 제안한다. 다중색상 정규화는 기존의 화소내 색상성분간의 정규화와 모든 화소에 대한 성분별 정규화를 복합적으로 사용함으로써, 객체의 영역들이 갖는 고유 색상성분의 분포를 좀더 특정 공간에 집중시키고 영상분할을 용이하게 한다. 이러한 방법의 효과를 입증하기 위해 가상의 입력영상을 제작하여 기존의 알고리즘과 본 논문에서의 방법을 함께 적용, 비교평가한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.