• Title/Summary/Keyword: 객체검출

Search Result 898, Processing Time 0.034 seconds

A Study on the Surveillance System of Multiple Object's Dangerous Behaviors (다중 객체의 위험 행동 감시 시스템 연구)

  • Shim, Young-Bin;Park, Hwa-Jin
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.455-462
    • /
    • 2013
  • This paper proposes a detection system that, by determining whether a dangerous act is being carried out among other pedestrians in the images captured using CCTV, provides pre-warnings and establishes emergency measures. To determine the presence of a dangerous act, after setting zones of interest and danger zones within those zones of interest, the danger level is determined in accordance with the range of encroachment upon detecting an object. Especially, this research aims at detecting a suicide jump from the bridge and extends to detecting a dangerous act among pedestrians from detecting a dangerous act of only one person with no one in the previous research. This system classifies the status into 3 levels as safe, alert, and danger according to the amount of part being over the bridge railing. If a situation is deemed as warning-worthy and emergency, the integrated control center is immediately alerted to facilitate prevention in advance.

Research on Object Detection Library Utilizing Spatial Mapping Function Between Stream Data In 3D Data-Based Area (3D 데이터 기반 영역의 stream data간 공간 mapping 기능 활용 객체 검출 라이브러리에 대한 연구)

  • Gyeong-Hyu Seok;So-Haeng Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.551-562
    • /
    • 2024
  • This study relates to a method and device for extracting and tracking moving objects. In particular, objects are extracted using different images between adjacent images, and the location information of the extracted object is continuously transmitted to provide accurate location information of at least one moving object. It relates to a method and device for extracting and tracking moving objects based on tracking moving objects. People tracking, which started as an expression of the interaction between people and computers, is used in many application fields such as robot learning, object counting, and surveillance systems. In particular, in the field of security systems, cameras are used to recognize and track people to automatically detect illegal activities. The importance of developing a surveillance system, that can detect, is increasing day by day.

Night Vision Pedestrian Detection using Contrast Enhancement Algorithm (대비 개선 기법을 이용한 야간 보행자 검출)

  • Han, Tae Young;Song, Byung Cheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.222-223
    • /
    • 2016
  • 보행자 인식을 위한 컴퓨터 비전 알고리즘은 야간 상황과 같이 저조도 환경에서는 인식 성능이 떨어지고 있다. 이로 인하여 최근 저조도 환경에서 촬영된 영상으로 야간 상황에서 객체 인식 성능을 높이는 기법들이 연구되고 있다. 야간 환경은 주간 환경과는 다르게 광량이 적기 때문에 인간의 시각으로도 객체 인식에 어려움이 있고 일반적인 카메라로 촬영된 영상으로 객체 인식이 어렵다. 최근에는 NIR 카메라를 이용하여 촬영된 영상으로 야간 보행자 인식 알고리즘이 개발되고 있으나, 인식률과 객체 인식 가능 거리 및 범위가 한정적이다. 또한 기존의 야간 보행자 검출 기법들은 방대한 연산량이 필요하기 때문에 실시간 객체 인식이 불가능하다. 본 논문에서는 NIR 카메라로부터 촬영된 영상으로 preprocessing 후 ACF(Aggregated Channel Feature)를 이용하여 최근 연구되고 있는 카메라 움직임이 있는 야간 환경에서 보행자 인식 알고리즘을 PC 및 TK1 Board 환경에서 구현하고 객체 인식률을 높인다.

  • PDF

지능형 감시 시스템을 위한 액티브 트래킹 및 객체 특성 분석 기술

  • Choe, Yu-Ju;Yang, Hwi-Seok;Hwang, Yong-Hyeon;Jo, Wi-Deok
    • Information and Communications Magazine
    • /
    • v.28 no.4
    • /
    • pp.35-40
    • /
    • 2011
  • 본고에서는 지능형 국방 감시시스템에 적용할 수 있는 핵심 기술인 PTZ(Pan-Tilt-Zoom) 네트워크 카메라를 이용한 액티브 객체 추적 및 객체 특성 분석 기법을 소개한다. 본고에서 소개하는 기법은 기존의 적응적 배경 모델링 기반의 객체 검출에서 발생하는 고스트 현상을 제거하고 정지객체를 안정적으로 추적할 수 있는 방법과 PTZ 카메라의 Panning, Tilting, Zooming을 통하여 카메라의 FOV를 지속적으로 추적하기 위한 카메라 이동 위치 예측 알고리즘을 포함하고 있다. 본고에서는 또한, 지능형 감시시스템의 한 종류로서 일반인이 통행할 수 있는 구역에서 출입자의 의상 특성을 분석하여 비인증 출입자를 검출하는 방법과 추적하는 객체가 차량일 경우, 차량의 종류를 자동 분류하는 기법을 소개한다.

Design of Multi Object Tracking System Using Intelligent Recognition and Tracking Technology (지능형 인식 및 추적 기술을 이용한 다중 객체 추적 시스템의 설계)

  • Oh, Senug-Hun;Yoo, Sung-Hoon;Kim, Su-Chan;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1367-1368
    • /
    • 2015
  • 본 논문에서는 지능형 인식 기술인 RBFNNs 패턴분류기와 추적 기법인 Particle Filter를 융합한 다중 객체 추적 시스템을 설계한다. 여러 객체가 동시에 존재하는 상황에서 각각의 객체를 개별적으로 추적하기 위해 추적 기법에 인식 알고리즘을 추가하였다. 학습 데이터는 다양한 상황에서 정확한 인식 결과를 확인하기 위해 정면, 좌, 우측 데이터를 사용하였으며, 테스트 영상에서 검출된 얼굴 이미지를 테스트 데이터로 사용하였다. 추적 알고리즘인 Particle Filter를 사용하여 검출된 객체의 추적을 수행하며, 인식 결과를 바탕으로 다양한 객체에 대하여 개별적인 추적을 수행한다.

  • PDF

A Comparative Study on Multi Object Tracking Methods for Sports Video (스포츠 경기 내의 다중객체 트래킹 비교 연구)

  • Moon, Sungwon;Lee, Jiwon;Nam, Dowon;Kim, Howon;Kim, Wonjun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.653-654
    • /
    • 2016
  • 기계학습 기술의 발전으로 인해 다양한 분야에서 객체를 자동으로 인식하고 그 행동을 분석하는 연구의 필요성이 대두되고 있으며, 이는 스포츠 분야도 마찬가지이다. 현재 스포츠 경기내의 다중객체를 검출하고 추적하는 시스템은 정확성이 높지 않아 대부분의 서비스가 숙련된 오퍼레이터의 수작업에 의존하고 있어 객체의 위치를 검출하고 이를 실시간으로 정확하게 추적할 수 있는 기술의 개발이 필요하다. 본 논문에서는 기존 알고려즘을 다중객체 추적에 적합하도록 구현하고 성능을 비교한 결과를 제시하여 스포츠 경기 내의 다중객체 추적에 적합한 알고리즘을 제안하고자 한다.

Implementation of augmented reality and object tracking using multiple camera (다중 카메라를 이용한 객체추적과 증강현실의 구현)

  • Kim, Hag-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.89-97
    • /
    • 2011
  • When examining current process of object tracking and search, objects were tracked by extracting them from image that was inputted through fixed single camera and objects were recognized through Zoom function to know detailed information on objects tracked. This study proposed system that expresses information on area that can seek and recognize object tracked as augmented reality by recognizing and seeking object by using multi camera. The result of experiment on proposed system showed that the number of pixels that was included in calculation was remarkably reduced and recognition rate of object was enhanced and time that took to identify information was shortened. Compared with existing methods, this system has advantage of better accuracy that can detect the motion of object and advantage of shortening time that took to detect motion.

UV Mapping Based Pose Estimation of Furniture Parts in Assembly Manuals (UV-map 기반의 신경망 학습을 이용한 조립 설명서에서의 부품의 자세 추정)

  • Kang, Isaac;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.667-670
    • /
    • 2020
  • 최근에는 증강현실, 로봇공학 등의 분야에서 객체의 위치 검출 이외에도, 객체의 자세에 대한 추정이 요구되고 있다. 객체의 자세 정보가 포함된 데이터셋은 위치 정보만 포함된 데이터셋에 비하여 상대적으로 매우 적기 때문에 인공 신경망 구조를 활용하기 어려운 측면이 있으나, 최근에 들어서는 기계학습 기반의 자세 추정 알고리즘들이 여럿 등장하고 있다. 본 논문에서는 이 가운데 Dense 6d Pose Object detector (DPOD) [11]의 구조를 기반으로 하여 가구의 조립 설명서에 그려진 가구 부품들의 자세를 추정하고자 한다. DPOD [11]는 입력으로 RGB 영상을 받으며, 해당 영상에서 자세를 추정하고자 하는 객체의 영역에 해당하는 픽셀들을 추정하고, 객체의 영역에 해당되는 각 픽셀에서 해당 객체의 3D 모델의 UV map 값을 추정한다. 이렇게 픽셀 개수만큼의 2D - 3D 대응이 생성된 이후에는, RANSAC과 PnP 알고리즘을 통해 RGB 영상에서의 객체와 객체의 3D 모델 간의 변환 관계 행렬이 구해지게 된다. 본 논문에서는 사전에 정해진 24개의 자세 후보들을 기반으로 가구 부품의 3D 모델을 2D에 투영한 RGB 영상들로 인공 신경망을 학습하였으며, 평가 시에는 실제 조립 설명서에서의 가구 부품의 자세를 추정하였다. 실험 결과 IKEA의 Stefan 의자 조립 설명서에 대하여 100%의 ADD score를 얻었으며, 추정 자세가 자세 후보군 중 정답 자세에 가장 근접한 경우를 정답으로 평가했을 때 100%의 정답률을 얻었다. 제안하는 신경망을 사용하였을 때, 가구 조립 설명서에서 가구 부품의 위치를 찾는 객체 검출기(object detection network)와, 각 개체의 종류를 구분하는 객체 리트리벌 네트워크(retrieval network)를 함께 사용하여 최종적으로 가구 부품의 자세를 추정할 수 있다.

  • PDF

Layered Object Detection using Gaussian Mixture Learning for Complex Environment (혼잡한 환경에서 가우시안 혼합 모델을 이용한 계층적 객체 검출)

  • Lee, Jin-Hyeong;Kim, Heon-Gi;Jo, Seong-Won;Kim, Jae-Min
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.435-438
    • /
    • 2007
  • 움직이는 객체를 검출하기 위해서 정확한 배경을 사용하기 위해 널리 사용되는 방법으로는 가우시안 혼합 모델이다. 가우시안 혼합 모텔은 확률적 학습 방법을 사용하는데, 이 방법은 움직이는 배경일 경우와 이동하던 물체가 정지하는 경우 배경을 정확히 모델링하지 못한다. 본 논문에서는 확률적 모델링을 통해 혼잡한 배경을 모델링하고 객체의 계층적 처리를 통해 보다 정확한 배경으로 갱신할 수 있는 학습 방법을 제안한다.

  • PDF

Multiple color normalization for effective object detection (효율적 객체정보 검출을 위한 다중색상 정규화)

  • 이은선;김상훈
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.589-591
    • /
    • 2002
  • 본 연구에서는 영상안에서의 중요한 객체정보를 검출하기 위한 전처리 과정으로 효율적인 색상정보 정규화에 의한 영역분석 방법을 제안한다. 다중색상 정규화는 기존의 화소내 색상성분간의 정규화와 모든 화소에 대한 성분별 정규화를 복합적으로 사용함으로써, 객체의 영역들이 갖는 고유 색상성분의 분포를 좀더 특정 공간에 집중시키고 영상분할을 용이하게 한다. 이러한 방법의 효과를 입증하기 위해 가상의 입력영상을 제작하여 기존의 알고리즘과 본 논문에서의 방법을 함께 적용, 비교평가한다.

  • PDF