• Title/Summary/Keyword: 객체검출

Search Result 898, Processing Time 0.027 seconds

A Study on the Construction of Image Datasets for Object Detection of Painting Cultural Heritage (회화문화재 객체검출을 위한 학습용 이미지 데이터셋 구축 방안 연구)

  • Kwon, Do-Hyung;Yu, Jeong-Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.853-855
    • /
    • 2021
  • 본 연구는 회화문화재 속에 표현된 다양한 종류의 객체를 검출할 수 있는 딥러닝 모델생성을 위해 필요한 학습용 이미지 데이터셋 구축방안을 제안한다. 먼저 기존 동양화 기반의 회화문화재 이미지 데이터 및 객체 특징 분석을 진행하였고, 이를 바탕으로 Natural image에 Pose transfer 및 Style transfer를 적용한 새로운 방식의 회화문화재 이미지 데이터 생성 방법을 제안한다. 제안한 프레임워크를 통해 기존 문화재 분야에서 가지고 있던 제한된 데이터 구축문제를 극복하고, 검출모델 생성을 위한 대용량의 학습데이터 구축 가능성을 제시하였다.

Research on railroad track object detection and classification based on mask R-CNN (mask R-CNN 기반의 철도선로 객체검출 및 분류에 관한 연구)

  • Seung-Shin Lee;Jong-Won Choi;Ryum-Duck Oh
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.81-83
    • /
    • 2024
  • 본 논문에서는 mask R-CNN의 이미지 세그먼테이션(Image Segmentation) 기법을 이용하여 철도의 선로를 식별하고 분류하는 방법을 제안한다. mask R-CNN의 이미지 세그먼테이션은 바운딩 박스(Bounding Box)를 통해 이미지에서 객체를 식별하는 R-CNN 알고리즘과는 달리 픽셀 단위로 관심 있는 객체를 검출하고 분류하는 기법으로서 오브젝트 디텍션(Object Detection)보다 더욱 정교한 객체 식별이 가능하다. 본 연구에서는 Pascal VOC 형태의 고속철도 데이터 24,205셋의 데이터를 전처리하고 MS COCO 데이터셋으로 변환하여, MMDetection의 mask R-CNN을 통해 픽셀 단위로 철도선로를 식별하고 정상/불량 상태를 분류하는 연구를 수행하였다. 선행연구에서는 YOLO를 활용하여 Polygon형태의 좌표를 바운딩 박스로 분류하였는데, 본 연구에서는 mask R-CNN을 활용함으로써 철도 선로를 더욱 정교하게 식별하였으며 정상/불량의 상태 분류는 YOLO와 유사한 성능을 보였다.

  • PDF

Multiple Object Detection and Tracking System robust to various Environment (환경변화에 강인한 다중 객체 탐지 및 추적 시스템)

  • Lee, Wu-Ju;Lee, Bae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.88-94
    • /
    • 2009
  • This paper proposes real time object detection and tracking algorithm that can be applied to security and supervisory system field. A proposed system is devide into object detection phase and object tracking phase. In object detection, we suggest Adaptive background subtraction method and Adaptive block based model which are advanced motion detecting methods to detect exact object motions. In object tracking, we design a multiple vehicle tracking system based on Kalman filtering. As a result of experiment, motion of moving object can be estimated. the result of tracking multipul object was not lost and object was tracked correctly. Also, we obtained improved result from long range detection and tracking.

Object Recognition Face Detection With 3D Imaging Parameters A Research on Measurement Technology (3D영상 객체인식을 통한 얼굴검출 파라미터 측정기술에 대한 연구)

  • Choi, Byung-Kwan;Moon, Nam-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.53-62
    • /
    • 2011
  • In this paper, high-tech IT Convergence, to the development of complex technology, special technology, video object recognition technology was considered only as a smart - phone technology with the development of personal portable terminal has been developed crossroads. Technology-based detection of 3D face recognition technology that recognizes objects detected through the intelligent video recognition technology has been evolving technologies based on image recognition, face detection technology with through the development speed is booming. In this paper, based on human face recognition technology to detect the object recognition image processing technology is applied through the face recognition technology applied to the IP camera is the party of the mouth, and allowed the ability to identify and apply the human face recognition, measurement techniques applied research is suggested. Study plan: 1) face model based face tracking technology was developed and applied 2) algorithm developed by PC-based measurement of human perception through the CPU load in the face value of their basic parameters can be tracked, and 3) bilateral distance and the angle of gaze can be tracked in real time, proved effective.

A Study on Lightweight Model with Attention Process for Efficient Object Detection (효율적인 객체 검출을 위해 Attention Process를 적용한 경량화 모델에 대한 연구)

  • Park, Chan-Soo;Lee, Sang-Hun;Han, Hyun-Ho
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.307-313
    • /
    • 2021
  • In this paper, a lightweight network with fewer parameters compared to the existing object detection method is proposed. In the case of the currently used detection model, the network complexity has been greatly increased to improve accuracy. Therefore, the proposed network uses EfficientNet as a feature extraction network, and the subsequent layers are formed in a pyramid structure to utilize low-level detailed features and high-level semantic features. An attention process was applied between pyramid structures to suppress unnecessary noise for prediction. All computational processes of the network are replaced by depth-wise and point-wise convolutions to minimize the amount of computation. The proposed network was trained and evaluated using the PASCAL VOC dataset. The features fused through the experiment showed robust properties for various objects through a refinement process. Compared with the CNN-based detection model, detection accuracy is improved with a small amount of computation. It is considered necessary to adjust the anchor ratio according to the size of the object as a future study.

Suggestion Of The Scene Change Detection Method Using The Region Segmentation On Video Sequence (비디오 시퀀스에서의 영역분할을 이용한 장면 전환 검출 방법의 제안)

  • Choo, Ho-Jin;Lee, Kwang-Ho;Choi, Chul;Choi, Young-Kwan;Cho, Sung-Min;Yoon, Pil-Young;Park, Chang-Chun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04b
    • /
    • pp.879-882
    • /
    • 2001
  • 장면 전환 검출을 위한 기존의 주요 방법은 대부분 화소값 차이, 통계적 차이, 그리고 일반적으로 가장 많이 사용하는 히스토그램 비교법등이었다. 이러한 방법에서는 각 비디오 프레임내에 포함되어 있는 영상의 내용 변화에 의한 장면 전환을 검출하기가 어렵고 히스토그램이 비슷한 경우 장면 전환 검출을 할 수 없었다. 본 논문에서는 비디오 시퀀스로부터 빠른 움직임을 포함하는 장면의 변화를 검출하는 객체의 중심점을 이용한 영역분할기법을 제안하였다. 제안하는 방법은 두 개의 프레임간 차영상을 이용해서 명암차를 추출한 후 화소값과 객체 영역의 중심점을 구한 후 사등분 분할하여 영역객체의 평균 및 분산값을 이용해서 내용에 의한 장면 전환도 검출하였다. 실험결과 제안된 방법에 의한 장면 전환 검출은 기존의 다른 방법에 비해 더 나은 성능을 얻었다.

  • PDF

A Multiple Vehicle Object Detection Algorithm Using Feature Point Matching (특징점 매칭을 이용한 다중 차량 객체 검출 알고리즘)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.123-128
    • /
    • 2018
  • In this paper, we propose a multi-vehicle object detection algorithm using feature point matching that tracks efficient vehicle objects. The proposed algorithm extracts the feature points of the vehicle using the FAST algorithm for efficient vehicle object tracking. And True if the feature points are included in the image segmented into the 5X5 region. If the feature point is not included, it is processed as False and the corresponding area is blacked to remove unnecessary object information excluding the vehicle object. Then, the post processed area is set as the maximum search window size of the vehicle. And A minimum search window using the outermost feature points of the vehicle is set. By using the set search window, we compensate the disadvantages of the search window size of mean-shift algorithm and track vehicle object. In order to evaluate the performance of the proposed method, SIFT and SURF algorithms are compared and tested. The result is about four times faster than the SIFT algorithm. And it has the advantage of detecting more efficiently than the process of SUFR algorithm.

A Study on Image Edge Detection using Adaptive Morphology Wavelet (적응적 형상학 웨이브렛을 이용한 영상 에지 검출 연구)

  • 백영현;문성룡
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.301-304
    • /
    • 2002
  • 그레이 스케일 영상의 객체 분할시 경계면의 모호함이 발생하여 정확하게 객체를 분할.검출 할 수 없으며 또한 영상 레벨에 따라 결과에 많은 영향을 미치게 된다 본 논문에서는 그 경계 부분을 정확하게 분할 . 검출하는 방법으로 적응적 형상학을 웨이브렛 알고리즘에 적용한후 최적의 영상을 찾는 알고리즘을 구현하였다. 본 논문은 입력 영상의 임계값에 따른 적응적 형태학을 이용하여 영상의 경계면을 레벨 업 시킨 후, 이를 웨이브렛에 적용하여 최적의 에지를 검출하였다. 또한, 기존의 영상 에지 검출알고리즘인 Sobel 에지 검출과 다른 웨이브렛 기저 계수를 적용한 에지 검출 방법과 비교하고, 제안된 알고리즘이 기존의 다른 에지 검출보다 우수함을 확인하였다. 특히 에지와 에지의 부분이 가까울 때 정확한 에지를 검출하였으며, 완만한 곡선을 가지고 있는 부분에서 더 우수한 결과 에지를 얻을 수 있음을 확인하였다.

Pedestrian detection in thermal image using hot-spot region (열 영상에서 핫 스팟 영역을 이용한 휴먼 보행자 검출 기법)

  • Kim, Deok-Yeon;Ko, Byoung-Chul;Nam, Jae-Yeal
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.348-350
    • /
    • 2012
  • 본 논문에서는 열 영상카메라를 통해 입력 받은 영상을 CS-LBP(Center-symmetric LBP)와 랜덤 포레스트(Random forest)를 이용하여 보행자 휴먼 객체를 검출하는 방법을 제안한다. 우선 불필요한 후보영역을 줄이기 위해 열 영상의 표준편차, 밝기 평균, 밝기 최대값을 이용하여 이진화하고, 신체부위 중 가장 발열이 강한 얼굴부위를 핫스팟 영역으로 설정한다. 그 후, 핫스팟 영역에서 CS-LBP특징을 추출하여 결정 트리의 앙상블인 랜덤 포레스트 분류기를 이용하여 최종적인 보행자 휴먼 객체를 검증한다. CS-LBP와 랜덤 포레스트 분류기를 통해 실시간 보행자 객체의 검출이 가능하고, 높은 검출 성능을 나타내었다.

Development of Pepper Disease Detection Application based on Object Detection using Mobile Camera (모바일 카메라를 이용한 객체 검출 기반의 고추 질병 감지 어플리케이션 개발)

  • Junyong Kim;Geunbeom Kim;Jongwook Si;Sungyoung Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.185-186
    • /
    • 2023
  • 작물의 병해 감지는 주관적인 관찰과 개인의 경험에 의존하는 전통적인 방법을 사용해왔다. 하지만, 이는 많은 시간이 소요되는 등의 한계를 가지고 있다. 본 논문에서는 모바일 카메라를 활용하여 촬영된 사진을 클라우드와 연동한 객체 검출 기반의 어플리케이션을 제안한다. 따라서, 휴대폰만 있다면 시공간적 제약을 받지 않고, 신속하고 정확하게 병해 검출 결과를 확인할 수 있는 장점이 있다.

  • PDF