Acknowledgement
Supported by : 한국연구재단
본 논문에서는 열 영상카메라를 통해 입력 받은 영상을 CS-LBP(Center-symmetric LBP)와 랜덤 포레스트(Random forest)를 이용하여 보행자 휴먼 객체를 검출하는 방법을 제안한다. 우선 불필요한 후보영역을 줄이기 위해 열 영상의 표준편차, 밝기 평균, 밝기 최대값을 이용하여 이진화하고, 신체부위 중 가장 발열이 강한 얼굴부위를 핫스팟 영역으로 설정한다. 그 후, 핫스팟 영역에서 CS-LBP특징을 추출하여 결정 트리의 앙상블인 랜덤 포레스트 분류기를 이용하여 최종적인 보행자 휴먼 객체를 검증한다. CS-LBP와 랜덤 포레스트 분류기를 통해 실시간 보행자 객체의 검출이 가능하고, 높은 검출 성능을 나타내었다.
Supported by : 한국연구재단