• Title/Summary/Keyword: 객관응력률

Search Result 4, Processing Time 0.02 seconds

Comparison of Objective Stress Rates for Explicit Transient Shell Dynamics Analysis (쉘 구조물의 과도동적거동해석에 적용된 응력률들의 비교)

  • Har, Ja-Son
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.497-502
    • /
    • 2004
  • This paper presents applications of the objective stress rates to stress update algorithms for transient shell dynamic analysis within the context of explicit time integration. The hypo elasto-plastic materials are assumed in establishing constitutive equations. The derivation of the objective stress rates are investigated by use of the Lie derivative. Comparison results are given between the Kirchhoff and Cauchy stress formulation. The Jacobian determination algorithm proposed in this paper is presented in association with the Belytschko-Lin-Tsay shell theory. Several numerical examples are demonstrated including contact and non-contact examples, by which proposed algorithms are compared with respect to the accuracy and effectiveness.

  • PDF

Development of Thermal Stress Measuring System (온도응력 측정용 시험장치의 개발)

  • 전상은;김국한;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.228-236
    • /
    • 2001
  • Even though numerous researches have been performed for the prediction of thermal stresses in mass concrete structures by both analytical and experimental means, the limitations exist for both approaches. In analytical approach, the fundamental limitation is derived from the difficulty of predicting concrete properties such as modulus of elasticity, coefficient of thermal expansion, etc.. In experimental approach, there are many uncertainties related to in-situ conditions, because a majority of researches have focused on measuring thermal stresses in actual and simulated structures. In this research, an experimental device measuring thermal stresses directly in a laboratory setting is developed. The equipment is located in a temperature chamber that follows the temperature history previously obtained from temperature distribution analysis. Thermal strains are measured continuously by a strain gauge in the device and the corresponding thermal stresses are calculated simply by force equilibrium condition. For the verification of the developed device, a traditional experiment measuring thermal strains from embedded strain gauges is performed simultaneously. The results show that the thermal strain values measured by the newly developed device agree well with the results from the benchmark experiment.

Determination of shear wave velocity profiles in soil deposit from seismic piezo-cone penetration test (탄성파 피에조콘 관입 시험을 통한 국내 퇴적 지반의 전단파 속도 결정)

  • Sun Chung Guk;Jung Gyungja;Jung Jong Hong;Kim Hong-Jong;Cho Sung-Min
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.125-153
    • /
    • 2005
  • It has been widely known that the seismic piezo-cone penetration test (SCPTU) is one of the most useful techniques for investigating the geotechnical characteristics including dynamic soil properties. As the practical applications in Korea, SCPTU was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTU waveform data obtained from the testing sites, the first arrival times of shear waves were and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity profiles (VS) were derived based on the refracted ray path method based on Snell's law and similar to the trend of cone tip resistance (qt) profiles. In Incheon area, the testing depths of SCPTU were deeper than those of conventional down-hole seismic tests. Moreover, for the application of the conventional CPTU to earthquake engineering practices, the correlations between VS and CPTU data were deduced based on the SCPTU results. For the empirical evaluation of VS for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification Index (IC), the authors suggested the VS-CPTU data correlations expressed as a function of four parameters, qt, fs, $\sigma$, v0 and Bq, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the down-hole seismic test during SCPTU and the conventional CPTU, it is shown that the VS-CPTU data correlations for all soils clays and sands suggested in this study is applicable to the preliminary estimation of VS for the Korean deposits and is more reliable than the previous correlations proposed by other researchers.

  • PDF

Synthetic Application of Seismic Piezo-cone Penetration Test for Evaluating Shear Wave Velocity in Korean Soil Deposits (국내 퇴적 지반의 전단파 속도 평가를 위한 탄성파 피에조콘 관입 시험의 종합적 활용)

  • Sun, Chang-Guk;Kim, Hong-Jong;Jung, Jong-Hong;Jung, Gyung-Ja
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.207-224
    • /
    • 2006
  • It has been widely known that the seismic piezo-cone penetration test (SCPTu) is one of the most useful techniques for investigating the geotechnical characteristics such as static and dynamic soil properties. As practical applications in Korea, SCPTu was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTu waveform data obtained from the testing sites, the first arrival times of shear waves and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity $(V_S)$ profiles with depth were derived based on the refracted ray path method based on Snell's law. Comparing the determined $V_S$ profile with the cone tip resistance $(q_t)$ profile, both trends of profiles with depth were similar. For the application of the conventional CPTu to earthquake engineering practices, the correlations between $V_S$ and CPTu data were deduced based on the SCPTu results. For the empirical evaluation of $V_S$ for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification index $(I_C)$, the authors suggested the $V_S-CPTu$ data correlations expressed as a function of four parameters, $q_t,\;f_s,\;\sigma'_{v0}$ and $B_q$, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the downhole seismic test during SCPTu and the conventional CPTu, it is shown that the $V_S-CPTu$ data correlations for all soils, clays and sands suggested in this study is applicable to the preliminary estimation of $V_S$ for the soil deposits at a part in Korea and is more reliable than the previous correlations proposed by other researchers.