• Title/Summary/Keyword: 개폐식 구조물

Search Result 30, Processing Time 0.028 seconds

Study on Application of Dampers and Optimal Design for Retractable Large Spatial Structures (개폐식 대공간 구조물의 감쇠장치 적용 및 최적설계에 관한 연구)

  • Joung, Bo-Ra;Kim, Si-Uk;Kim, Chee-Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.351-358
    • /
    • 2020
  • This paper presents a tuned mass damper (TMD) utilizing a parametric design technique to reduce the dynamic responses to seismic loads of retractable large spatial structures. An artificial intelligence algorithm was developed to automatically search for the installation position of the damping device. This enables confirming the dynamic response of the structure in real time while finding the optimum position for the damping device. Further, the optimum mass of the damping device is determined from among several alternatives, and a design that can be effectively applied to both open and closed conditions of the roof is obtained.

Design and Implementation of Parametric Modeler for Retractable Roof Three-Dimensional Truss (개폐식 지붕 입체트러스를 위한 파라메트릭 모델러의 설계와 구현)

  • Jeong, Jin-Young;Joung, Bo-Ra;Kim, Chee-Kyeong;Lee, Si Eun;Kim, Si-Uk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • The purpose of this study is to implement modeling by applying the parametric technique to the atypical trusses of rigid retractable large space structures. The retractable large space structure requires a lot of time and skill in modeling nonlinear shapes or generating, interpreting, and reviewing many models by alternative. To solve these problems, we introduce firstly parametric modeling tool, secondly, we analyze the connection of atypical three-dimensional trusses of a rigid retractable large-space structure, and finally model it as parametric components of the developed trusses. Therefore, it is a future study to make effective modeling of the openable roof by developing the components that can realize the modeling of the truss classified by the opening and closing method, respectively.

A Study on the Evaluation of Watertightness Properties for Rain-Block System in the Sliding-Roof Joint of Large-Span Membrane Structures (개폐식 대공간 막 구조물에서 지붕 맞댐부 우수차단 시스템의 수밀성 평가에 관한 연구)

  • Oh, Sang-Keun;Baek, Ki-Youl;Lee, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.129-136
    • /
    • 2010
  • This study is an evaluation of the water-tightness properties of rain-block systems in the sliding-roof joint of large-span membrane structures. In this study, we suggested a method of evaluating the water-tightness performance of the joint part of a sliding door in the roof of a large-span membrane structure (for a pilot project), in an environment of rain and wind. The shape of the rainwater blocking systems of the joint part in a sliding door verifies the defects and the effects of water leakage prevention when there is precipitation with wind conditions. To secure the water-tightness of large span membrane structures, it is necessary to have a guideline on the evaluation of the design for rain-block system of the joint part, and the quality of the membrane material, both of a retractable roof and a closed roof.

Parametric Design and Wind Load Application for Retractable Large Spatial Structures (개폐식 대공간 구조물의 파라메트릭 설계와 풍하중 적용)

  • Kim, Si-Uk;Joung, Bo-Ra;Kim, Chee-Kyeong;Lee, Si Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.341-348
    • /
    • 2019
  • The purpose of this study is to model and analyze retractable large spatial structures by applying parametric modeling techniques. The modeling of wind loads in the analysis of typical structures including curved surfaces can be error-prone, and the processing time increases dramatically when there are many types of variables. However, the method based on StrAuto that was developed in previous research, facilitates the efficacious assignment of wind loads to structures and the rapid arrival of conclusions. As a result, it is possible to compare alternatives with various loads, including wind loads, to determine an optimal alternative much faster than the existing process. Further, it is almost impossible to directly input the wind load by calculating the area of an irregularly curved surface. However, the proposed method automatically assigns the wind load, which allows for automatic optimization in a structural analysis system. The approach was applied and optimized using several models, and the results are presented.

Vibration Analysis of Space Structure with Retractable Roof (개폐식 지붕구조의 움직임에 대한 공간구조물의 진동해석)

  • Kim, Gee-Cheol;Kang, Joo-Won;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.113-120
    • /
    • 2011
  • Retractable roof system is one of the special feature in stadium or complex structure. And this retractable roof system makes possible to use spacial structure all-weather. This retractable roof system is able to classified into overlapping, parallel movement and folding system. Moving load, impact load, inertial or braking loads, these dynamic loads induced by movements of retractable roof system. So it is necessary to analysis of spacial structures are subjected to these dynamic loads. Dynamic loads that are induced by the retractable roof movements can be applied to moving mass method or moving force method. But, moving force method is appropriate because the retractable roof movements is slow relatively. In this paper, new application method of moving forces induced by the retractable roof movements is proposed. And vibration analysis of spacial structures are executed by using the proposed method. This proposed equivalent moving force can be easily applied to spacial structure that is subjected to dynamic loads induced by movement of the retractable roof system.