• 제목/요약/키워드: 개체 기반

검색결과 923건 처리시간 0.031초

분산병렬처리 기반 기술개체 인식 시스템 (Technical Entity Recognition System based on Distributed Parallel Processing)

  • 최윤수;이원구;이민호;최동훈;윤화묵;조민희;정한민
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(A)
    • /
    • pp.242-244
    • /
    • 2012
  • 과학기술 문헌의 기술개체 인식에 관한 연구는 정보추출, 텍스트마이닝, 질의응답 분야 등의 선행 연구로서 다양한 통계적 방법론을 사용하여 기술개체 인식 정확률을 향상시키기 위해 연구되어 왔다. 하지만 기존의 연구는 단일-코어 또는 단일 머신 상에서 수행되었기 때문에, 폭발적으로 증가하는 문헌들에 대한 실시간 분석 요구를 처리할 수 없는 상황에 직면하고 있다. 이에 본 논문에서는 기술개체를 인식하는 과정에서 병목현상이 발생하는 작업을 "후보개체 추출 과정"의 언어처리 부분과 "개체 가중치 할당 과정"에서 통계정보를 취합하는 부분으로 분류하고, 각 작업을 하둡의 맵 작업과 리듀스 작업을 이용하여 해결하는 분산 병렬 처리 기반의 기술개체 인식 방법에 대해 살펴보고자 한다.

KAISER: 워드 임베딩 기반 개체명 어휘 자가 학습 방법을 적용한 개체명 인식기 (KAISER: Named Entity Recognizer using Word Embedding-based Self-learning of Gazettes)

  • 함영균;최동호;최기선
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.337-339
    • /
    • 2016
  • 본 논문에서는 한국어 개체명 인식의 성능 향상을 위하여 워드 임베딩을 활용할 수 있는 방법에 대하여 기술한다. 워드 임베딩이란 문장의 단어의 공기정보를 바탕으로 그 단어의 의미를 벡터로 표현하는 분산표현이다. 이러한 분산 표현은 단어 간의 유의미한 정도를 계산하는데 유용하다. 본 논문에서는 이러한 워드 임베딩을 통하여 단어 벡터들의 코사인 유사도를 통한 개체명 사전 자가 학습 및 매칭 방법을 적용하고, 그 실험 결과를 보고한다.

  • PDF

관세데이터를 활용한 개체명 인식 (Named Entity Recognition Using Customs Data)

  • 유경훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.434-436
    • /
    • 2023
  • 본 연구는 관세 데이터를 BERT 기반 모델을 활용한 개체명 인식(NER)모델을 제안한다. 관세 분야 국내 첫 시도이며, 선행연구들과 달리 개체명 인식에 초점을 맞춘다. 관세 관련 텍스트에서 고유한 의미의 개체를 인식하는 것이 주요 목표이다. 이 연구는 관세 분야의 개체명 인식에 대한 이해도를 높이고 향후 HS 코드 검색 시스템 개발에 대한 기초 연구를 제공한다.

RDF/OWL의 객체속성을 이용한 관계온톨로지 시스템 구축과 활용에 관한 연구 (A Study on Implementation and Applying Relationship Ontology System Using RDF/OWL Object Property)

  • 강현민
    • 정보관리학회지
    • /
    • 제27권4호
    • /
    • pp.219-237
    • /
    • 2010
  • FRBR, FRAD 개념모형과 RDA 목록규칙에는 서지개체와 접근제어개체 간 다양한 수준에서 발생하는 복합적이고 다원적인 관계유형들이 규정되어 있다. 본 연구에서는 이러한 관계유형을 술어논리에 기반하여 온톨로지 환경에서 개체 클래스의 인스턴스와 인스턴스 간 관계를 RDF/OWL의 객체속성(Object Property)을 서지세계의 개체 간 관계기술과 접근을 위한 새로운 제어기제이자 통합적 연결장치로서 그 적용과 활용 가능성을 시도하였다. 이를 위해 관계온톨로지 시스템을 구축하고 SPARQL 질의결과를 온톨로지 시각화도구를 통해 제시하였다. 이로써 온톨로지 기반의 '관계기술목록'이라는 새로운 목록업무 영역의 확장을 통해, 목록기능의 '다 대 다 집중'이라는 의미 확장, '개체단위 기반의 의미적 집중', RDF/OWL 객체속성의 계층관계 상속을 이용한 '관계 추론' 등을 연구결과로 제시하였다.

센서 네트워크에서 연속적인 개체 추적을 위한 동적 직사각형 영역 기반 협동 메커니즘 (Dynamic Rectangle Zone-based Collaboration Mechanism for Continuous Object Tracking in Wireless Sensor Networks)

  • 박보미;이의신;김태희;박호성;이정철;김상하
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권8호
    • /
    • pp.591-595
    • /
    • 2009
  • 센서 네트워크에서 개체 검출과 추적에 관한 기존 라우팅 프로토콜들은 사람, 동물, 차량 등과 같은 하나 또는 그 이상의 단일(individual) 개체들에 대한 검출과 추적을 하기 위한 방법에만 관심을 가질 뿐, 독가스, 생화학물질 등과 같은 연속적인 개체들을 검출하고 추적하는 프로토콜들은 많지 않다. 이러한 연속적인 개체들은 어느 지역에 계속적으로 분산되어 있고, 광범위한 지역을 차지한다는 점에서 단일 개체들과 차이가 있다. 따라서 많은 센서 노드들에 의해 검출되고 센싱되는 데이터들은 중복적이고 서로 깊이 관련되어 있다. 그러므로 지역적으로 센싱 데이터를 수집하고 통합하여 데이터를 보고하기 위한 효율적인 방안이 필요하다. 본 논문에서 우리는 연속적인 개체들을 검출, 추적하고 모니터링(monitoring)하기 위한 동적인 직사각형 영역에 기반한 연속적인 개체 추적 방안을 제안한다. 제안된 방안은 하나의 연속된 개체가 차지한 지역이 포함된 동적인 직사각형 영역을 구성하고, 영역에서 하나의 대표 노드가 연속된 개체를 검출하는 센서 노드들로부터 센싱 데이터를 수집하고 통합한다.

개체명을 이용한 주제기반 웹 문서 클러스터링 (Topic based Web Document Clustering using Named Entities)

  • 성기윤;윤보현
    • 한국콘텐츠학회논문지
    • /
    • 제10권5호
    • /
    • pp.29-36
    • /
    • 2010
  • 종래의 클러스터링 기법은 단순히 키워드를 추출에 기반한 단어간 유사도에 의한 그룹핑 방식을 구사함으로써 비교해야 할 대상 키워드 수 및 종류가 매우 다양하여 계산량이 증가함으로써 속도가 느리고 정확도도 높지 않은 편이다. 본 논문은 이러한 단점을 해소하기 위해 웹 문서를 대상으로 기존 명사 위주의 키워드 뿐 아니라 인명, 지명, 회사명, 물품명 등을 자동으로 인식하는 개체명 인식 결과를 이용하는 웹클러스터링 기법을 제안하고자 한다. 실험을 통해 기존 키워드 기반 클러스터링 결과에 비해 개체명 기반클러스터링의 품질이 우수함을 증명하였으며, 문서 집합 특성에 따른 클러스터링 결과도 비교 분석하였다.

Bidirectional LSTM CRF 기반의 개체명 인식을 위한 단어 표상의 확장 (Expansion of Word Representation for Named Entity Recognition Based on Bidirectional LSTM CRFs)

  • 유홍연;고영중
    • 정보과학회 논문지
    • /
    • 제44권3호
    • /
    • pp.306-313
    • /
    • 2017
  • 개체명 인식이란 문서 내에서 인명, 기관명, 지명, 시간, 날짜 등 고유한 의미를 가지는 개체명을 추출하여 그 종류를 결정하는 것을 말한다. 최근 개체명 인식 연구에서 가장 우수한 성능을 보여주고 있는 모델은 Bidirectional LSTM CRFs 모델이다. 이러한 LSTM 기반의 딥 러닝 모델은 입력이 되는 단어 표상에 의존적이다. 따라서 입력이 되는 단어를 잘 표현하기 위하여 단어 표상을 확장하는 방법에 대한 연구가 많이 진행되어지고 있다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs모델을 사용하고, 그 입력으로 사용되는 단어 표상을 확장하기 위해 사전 학습된 단어 임베딩 벡터, 품사 임베딩 벡터, 음절 기반에서 확장된 단어 임베딩 벡터, 그리고 개체명 사전 자질 벡터를 사용한다. 최종 단어 표상 확장 결과 사전 학습된 단어 임베딩 벡터만 사용한 것 보다 8.05%p의 성능 향상을 보였다.

사용자 데모를 이용한 관계적 개체 기반 정책 학습 (Learning Relational Instance-Based Policies from User Demonstrations)

  • 박찬영;김현식;김인철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권5호
    • /
    • pp.363-369
    • /
    • 2010
  • 데모-기반 학습은 사용자가 직접 작업을 시연함으로써 로봇에게 쉽게 새로운 작업지식을 가르칠 수 있다는 장점이 있다. 하지만 기존의 많은 데모-기반 학습법들은 상태공간과 정책들을 표현하기 위해 속성-값 벡터 모델을 이용하였다. 속성-값 벡터 모델의 제한성으로 인해, 이들은 학습과정의 효율성도 낮고 학습된 정책의 재사용성도 낮았다. 본 논문에서는 기존의 속성-값 모델 대신 관계적 모델을 이용하는 새로운 데모-기반 작업 학습법을 제안한다. 이 방법에서는 사용자 데모 기록에서 추출한 훈련 예들에 관계적 개체-기반 학습법을 적용함으로써, 동일 작업영역내의 다른 유사한 작업들에도 활용하기 용이한 관계적 개체-기반 정책을 유도한다. 이 관계적 정책은 (상태, 목표) 쌍으로 표현되는 임의의 한 상황에 대해 이것에 대응하는 하나의 실행동작을 결정해주는 역할을 한다. 본 논문에서는 데모-기반 관계적 정책 학습법에 대해 자세히 소개한 후, 로봇 시뮬레이터를 이용한 실험을 통해 이 학습법의 효과를 분석해본다.

지상무기체계 교전 모의를 위한 에이전트 기반 시뮬레이션 시스템 아키텍처 설계 연구 (A Study on Agent based Simulation System Architecture for the Engagement of Ground Weapon Systems)

  • 함원경;정용호;나재호;박상철
    • 한국시뮬레이션학회논문지
    • /
    • 제21권4호
    • /
    • pp.81-90
    • /
    • 2012
  • 본 논문은 지상무기체계 교전을 모의하기 위한 시뮬레이션 시스템 구축에 관한 연구이다. 본 논문에서는 에이전트 시뮬레이션 설계 방법론에 기반하여 시뮬레이션 시스템 아키텍처를 제안한다. 제안된 아키텍처의 각 개체는 에이전트 기반으로 모듈화된 컴포넌트들을 조합하여 구성된다. 이와 같은 개체 구성 방법은 개체의 재사용성과 조합성을 향상시키고, 결과적으로 시뮬레이션 시스템의 개발에 투입되는 시간, 비용, 및 노력을 감소시킨다. 지상무기체계 교전의 모의는 환경의 영향을 반영하는 것이 매우 중요하다. 제안된 아키텍처의 합성전장환경은 전장의 환경 데이터를 가지며 시뮬레이션 시스템의 전투개체와 계속적으로 상호작용한다. 이러한 아키텍처를 기반으로 구축된 시뮬레이션 시스템은 목적에 따라 다양한 지상무기체계 교전 시나리오의 신속한 모의가 가능하고, 개체들의 행위 수행에 환경 영향이 반영되어 신뢰성 있는 시뮬레이션 결과를 도출할 수 있다. 본 논문은 제안된 아키텍처를 기반으로 예제 시스템을 구축하여 그 효용성을 증명하였다.

그래프 기반의 상호 중요도 측정 기법을 이용한 영역별 개체명 자동 추출 (Automatic Named Entities Extraction Using the Graph-based Measurement Technique of the Mutual Importance)

  • 배상준;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2008년도 제20회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.17-22
    • /
    • 2008
  • 본 논문에서는 영역별로 자동으로 개체명을 추출하기 위하여 씨앗단어를 이용하고, 웹페이지와 개체명 후보들 간의 상호 중요도를 측정하여 개체명 후보들의 순위를 정하는 방식을 제안한다. 제안된 방식은 크게 세 단계에 의해서 수행되어 지는데 먼저 씨앗단어 정보를 이용하여 웹페이지를 검색하고, 검색되어진 웹 페이지와 씨앗단어 정보를 이용하여 패턴 규칙을 추출한다. 추출된 패턴 규칙을 웹페이지에 적용하여 개체명 후보들을 추출하고 추출된 후보들과 웹페이지 사이의 상호 중요도를 재귀적으로 계산하여 최종적으로 개체명 후보들의 순위가 정해 진다. 한국어와 영어 개체명 영역에 제안된 기법을 적용하여 실험한 결과 한국어에서는 78.72%의 MAP를 얻을 수 있었고, 영어에서는 96.48%의 MAP를 얻었다. 특히 영어 개체명 인식에서의 성능은 구글에서 제공하고 있는 구글셋의 결과보다도 높은 성능을 보였다.

  • PDF