• Title/Summary/Keyword: 개체인식

Search Result 449, Processing Time 0.025 seconds

A Korean Named Entity Recognizer using Weighted Voting based Ensemble Technique (가중 투표 기반의 앙상블 기법을 이용한 한국어 개체명 인식기)

  • Kwon, Sunjae;Heo, Yoonseok;Lee, Kyunchul;Lim, Jisu;Choi, Hojeong;Seo, Jungyun
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.333-336
    • /
    • 2016
  • 본 연구에서는 개체명 인식의 성능을 향상시키기 위해, 가중 투표 방법을 이용하여 개체명 인식 모델을 앙상블 하는 방법을 제안한다. 각 모델은 Conditional Random Fields의 변형 알고리즘을 사용하여 학습하고, 모델들의 가중치는 다목적 함수 최적화 기법인 NSGA-II 알고리즘으로 학습한다. 실험 결과 제안 시스템은 $F_1Score$기준으로 87.62%의 성능을 보여, 단독 모델 중 가장 높은 성능을 보인 방법보다 2.15%p 성능이 향상되었다.

  • PDF

Bio-NER using LSTM-CRF (LSTM-CRF를 이용한 생명과학분야 개체명 인식)

  • Choi, Kyoungho;Hwang, Hyunsun;Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.85-89
    • /
    • 2015
  • 본 논문에서는 시퀀스 레이블링 문제에 적합하다고 알려진 Long Short Term Memory Recurrent Neural Network에 아웃풋간의 의존관계를 추가한 LSTM-CRF(Conditional Random Field)를 이용하여 생명과학분야 개체명 인식 시스템을 구축하였다. 학습 및 평가를 위해 BioNLP 2011-st REL data를 개체명 인식 실험에 사용하였으며, 실험결과 LSTM-CRF를 사용한 시스템은 81.83의 F1-score를 기록해, 기존의 시스템인 "BANNER"의 F1-score 81.96과 비슷한 성능을 보였다.

  • PDF

Named Entity Recognition with Structural SVMs and Pegasos algorithm (Structural SVMs 및 Pegasos 알고리즘을 이용한 한국어 개체명 인식)

  • Lee, Changki;Jang, Myungil
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.100-104
    • /
    • 2010
  • 개체명 인식은 정보 추출의 한 단계로서 정보검색 분야 뿐 아니라 질의응답과 요약 분야에서 매우 유용하게 사용되고 있다. 본 논문에서는 structural Support Vector Machines(structural SVMs) 및 수정된 Pegasos 알고리즘을 이용한 한국어 개체명 인식 시스템에 대하여 기술하고 기존의 Conditional Random Fields(CRFs)를 이용한 시스템과의 성능을 비교한다. 실험결과 structural SVMs과 수정된 Pegasos 알고리즘이 기존의 CRFs 보다 높은 성능을 보였고(신뢰도 99%에서 통계적으로 유의함), structural SVMs과 수정된 Pegasos 알고리즘의 성능은 큰 차이가 없음(통계적으로 유의하지 않음)을 알 수 있었다. 특히 본 논문에서 제안하는 수정된 Pegasos 알고리즘을 이용한 경우 CRFs를 이용한 시스템보다 높은 성능 (TV 도메인 F1=85.43, 스포츠 도메인 F1=86.79)을 유지하면서 학습 시간은 4%로 줄일 수 있었다.

  • PDF

Text Categorization Based on Terminology and Information Extraction (전문용어 및 정보추출에 기반한 문서분류시스템)

  • Lee, Kyung-Soon;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.79-84
    • /
    • 1999
  • 본 연구에서는 문서분류시스템에서 자질의 표현으로 전문분야사전을 이용한 분야정보와 개체정보추출을 통한 개체정보를 이용한다. 또한 지식정보를 보완하기 위해 통계적인 방법으로 범주 전문용어를 인식하여 자질로 표현하는 방법을 제안한다. 문서에 나타난 용어들이 어떤 특정 전문분야에 속하는 용어들이 많이 나타나는 경우 그 문서는 용어들이 속한 분야의 문서일 가능성이 높다. 또한, 정보추출을 통해 용어가 어떠한 개체를 나타내는지를 인식하여 문서를 표현함으로써 문서가 내포하는 의미를 보다 잘 반영할 수 있게 된다. 분야정보나 개체정보를 알 수 없는 용어에 대해서는 학습문서로부터 전문분야를 자동 인식함으로써 문서표현의 지식정보를 보완한다. 전문분야, 개체정보 및 범주전문용어에 기반해서 표현된 문서의 자질에 대해서 지지벡터기계 학습에 기반한 문서분류기틀 이용하여 각 범주에 대해 이진분류를 하였다. 제안된 문서자질표현은 용어기반의 자질표현에 비해 좋은 성능을 보이고 있다.

  • PDF

KAISER: Named Entity Recognizer using Word Embedding-based Self-learning of Gazettes (KAISER: 워드 임베딩 기반 개체명 어휘 자가 학습 방법을 적용한 개체명 인식기)

  • Hahm, Younggyun;Choi, Dongho;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.337-339
    • /
    • 2016
  • 본 논문에서는 한국어 개체명 인식의 성능 향상을 위하여 워드 임베딩을 활용할 수 있는 방법에 대하여 기술한다. 워드 임베딩이란 문장의 단어의 공기정보를 바탕으로 그 단어의 의미를 벡터로 표현하는 분산표현이다. 이러한 분산 표현은 단어 간의 유의미한 정도를 계산하는데 유용하다. 본 논문에서는 이러한 워드 임베딩을 통하여 단어 벡터들의 코사인 유사도를 통한 개체명 사전 자가 학습 및 매칭 방법을 적용하고, 그 실험 결과를 보고한다.

  • PDF

Korean Named Entity Recognition using D-Tag (D-Tag를 이용한 한국어 개체명 인식)

  • Eunsu Kim;Sujong Do;Cheoneum Park
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.35-40
    • /
    • 2022
  • 본 논문에서는 시퀀스 레이블링 문제(sequence labeling problem)인 개체명 인식에 사용할 새로운 태깅 포맷인 Delimiter tag (D-tag)를 소개한다. 시퀀스 레이블링 문제에서 사용하는 BIO-tag 포맷은 개체명 레이블을 B (beginning)와 I (inside) 의미의 레이블로 확장하여 타겟 클래스의 수가 2배 증가한다. 또한 BIO-tag 포맷을 사용할 경우, 모델이 B와 I 를 잘못 분류하는 문제가 발생하며, 레이블 수가 많은 세부 분류 개체명의 경우에는 label confusion을 야기한다. 본 논문에서 제안한 D-tag 포맷은 타겟 클래스의 수를 증가시키지 않기 때문에 앞서 언급한 문제를 해결할 수 있다. 실험 결과, D-tag를 사용하여 학습한 모델이 BIO-tag를 사용한 경우보다 더 좋은 성능을 보여, 유망함을 확인하였다.

  • PDF

산란피크는 높을수록 좋은가?

  • 김인식
    • KOREAN POULTRY JOURNAL
    • /
    • s.102
    • /
    • pp.57-61
    • /
    • 1978
  • 양계업이 대형화되면서부터 사양관리의 관점은 닭을 개체로 보지 않고 계군 즉 집단으로 판단하고 있다. 그러나 개체로 분류하여보면 계군으로 나타난 통계에 의한 관리가 부분적으로 불합리함을 알게된다. 축산업은 그것이 생명을 다루는 한 개체관리의 관점에서부터 시작되어야 한다. 경영관리에서는 계군을 한 개 집단으로 처리하더라도 기술관리는 닭의 개체에서부터 전체로 진행해야하는 것이다.

  • PDF

Expansion of Word Representation for Named Entity Recognition Based on Bidirectional LSTM CRFs (Bidirectional LSTM CRF 기반의 개체명 인식을 위한 단어 표상의 확장)

  • Yu, Hongyeon;Ko, Youngjoong
    • Journal of KIISE
    • /
    • v.44 no.3
    • /
    • pp.306-313
    • /
    • 2017
  • Named entity recognition (NER) seeks to locate and classify named entities in text into pre-defined categories such as names of persons, organizations, locations, expressions of times, etc. Recently, many state-of-the-art NER systems have been implemented with bidirectional LSTM CRFs. Deep learning models based on long short-term memory (LSTM) generally depend on word representations as input. In this paper, we propose an approach to expand word representation by using pre-trained word embedding, part of speech (POS) tag embedding, syllable embedding and named entity dictionary feature vectors. Our experiments show that the proposed approach creates useful word representations as an input of bidirectional LSTM CRFs. Our final presentation shows its efficacy to be 8.05%p higher than baseline NERs with only the pre-trained word embedding vector.

Named Entity and Event Annotation Tool for Cultural Heritage Information Corpus Construction (문화유산정보 말뭉치 구축을 위한 개체명 및 이벤트 부착 도구)

  • Choi, Ji-Ye;Kim, Myung-Keun;Park, So-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.29-38
    • /
    • 2012
  • In this paper, we propose a named entity and event annotation tool for cultural heritage information corpus construction. Focusing on time, location, person, and event suitable for cultural heritage information management, the annotator writes the named entities and events with the proposed tool. In order to easily annotate the named entities and the events, the proposed tool automatically annotates the location information such as the line number or the word number, and shows the corresponding string, formatted as both bold and italic, in the raw text. For the purpose of reducing the costs of the manual annotation, the proposed tool utilizes the patterns to automatically recognize the named entities. Considering the very little training corpus, the proposed tool extracts simple rule patterns. To avoid error propagation, the proposed patterns are extracted from the raw text without any additional process. Experimental results show that the proposed tool reduces more than half of the manual annotation costs.

A Study on Named Entity Recognition for Effective Dialogue Information Prediction (효율적 대화 정보 예측을 위한 개체명 인식 연구)

  • Go, Myunghyun;Kim, Hakdong;Lim, Heonyeong;Lee, Yurim;Jee, Minkyu;Kim, Wonil
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.58-66
    • /
    • 2019
  • Recognition of named entity such as proper nouns in conversation sentences is the most fundamental and important field of study for efficient conversational information prediction. The most important part of a task-oriented dialogue system is to recognize what attributes an object in a conversation has. The named entity recognition model carries out recognition of the named entity through the preprocessing, word embedding, and prediction steps for the dialogue sentence. This study aims at using user - defined dictionary in preprocessing stage and finding optimal parameters at word embedding stage for efficient dialogue information prediction. In order to test the designed object name recognition model, we selected the field of daily chemical products and constructed the named entity recognition model that can be applied in the task-oriented dialogue system in the related domain.