• 제목/요약/키워드: 개체명 인식 및 분류

검색결과 32건 처리시간 0.024초

한국어 제목 개체명 인식 및 사전 구축: 도서, 영화, 음악, TV프로그램 (Named Entity Recognition and Dictionary Construction for Korean Title: Books, Movies, Music and TV Programs)

  • 박용민;이재성
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권7호
    • /
    • pp.285-292
    • /
    • 2014
  • 개체명 인식은 정보검색 시스템, 질의응답 시스템, 기계번역 시스템 등의 성능을 향상시키기 위하여 사용된다. 개체명 인식은 일반적으로 PLOs(인명, 지명, 기관명)을 대상으로 하며, 주로 미등록어와 고유명사로 이루어져 있기 때문에 고유명사나 미등록어는 중요한 개체명 후보로 쓰일 수 있다. 하지만 도서명, 영화명, 음악명, TV프로그램명과 같은 제목 개체명은 PLO와는 달리 단어부터 문장까지 매우 다양한 형태를 지니고 있어서 개체명 인식이 쉽지 않다. 본 논문에서는 뉴스 기사문을 이용하여 제목 개체명을 빠르게 인식하고 자동으로 사전을 구축하는 방법을 제안한다. 먼저 특수기호로 묶인 어절을 추출하고, 주변 문맥 단어 및 단어 거리를 이용하여 SVM으로 제목 후보들을 추출하였다. 이렇게 추출된 제목 후보들은 상호 정보량을 가중치로 SVM을 이용해 제목 유형을 분류하였다.

한국어 어휘의미망을 활용한 Conditional Random Fields 기반 한국어 개체명 인식 (Conditional Random Fields based Named Entity Recognition Using Korean Lexical Semantic Network)

  • 박서연;옥철영;신준철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.343-346
    • /
    • 2020
  • 개체명 인식은 주어진 문장 내에서 OOV(Out of Vocaburary)로 자주 등장하는 고유한 의미가 있는 단어들을 미리 정의된 개체의 범주로 분류하는 작업이다. 최근 개체명이 문장 내에서 OOV로 등장하는 문제를 해결하기 위해 외부 리소스를 활용하는 연구들이 많이 진행되었다. 본 논문은 의미역, 의존관계 분석에 한국어 어휘지도를 이용한 자질을 추가하여 성능 향상을 보인 연구들을 바탕으로 이를 한국어 개체명 인식에 적용하고 평가하였다. 실험 결과, 한국어 어휘지도를 활용한 자질을 추가로 학습한 모델이 기존 모델에 비해 평균 1.83% 포인트 향상하였다. 또한, CRF 단일 모델만을 사용했음에도 87.25% 포인트라는 높은 성능을 보였다.

  • PDF

ManiFL을 이용한 한국어 개체명 인식 (Korean Named Entity Recognition using ManiFL)

  • 김완수;신준철;박서연;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.633-636
    • /
    • 2021
  • 개체명 인식은 주어진 문장 안의 고유한 의미가 있는 단어들을 인명, 지명, 단체명 등의 미리 정의된 개체의 범주로 분류하는 문제이다. 최근 연구에서는 딥 러닝, 대용량 언어 모델을 사용한 연구들이 활발하게 연구되어 높은 성능을 보이고 있다. 하지만 이러한 방법은 대용량 학습 말뭉치와 이를 처리할 수 있는 높은 연산 능력을 필요로 하며 모델의 실행 속도가 느려서 실용적으로 사용하기 어려운 문제가 있다. 본 논문에서는 얕은 기계 학습 기법을 적용한 ManiFL을 사용한 개체명 인식 시스템을 제안한다. 형태소의 음절, 품사 정보, 직전 형태소의 라벨만을 자질로 사용하여 실험하였다. 실험 결과 F1 score 기준 90.6%의 성능과 초당 974 문장을 처리하는 속도를 보였다.

  • PDF

음식메뉴 개체명 인식을 위한 음식메뉴 사전 자동 구축 (Automatic Construction of Restaurant Menu Dictionary)

  • 구영현;유성준
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2013년도 제25회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.102-106
    • /
    • 2013
  • 레스토랑 리뷰 분석을 위해서는 음식메뉴 개체명 인식이 매우 중요하다. 그러나 현재의 개체명 사전을 이용하여 리뷰 분석을 할 경우 구체적이고 복잡한 음식메뉴명을 표현하는데 충분하지 않으며 지속적인 업데이트가 힘들어 새로운 트렌드의 음식 메뉴명 등이 반영되지 않는 문제가 있다. 본 논문에서는 레스토랑 전문 사이트와 레시피 제공 사이트에서 각 레스토랑의 메뉴 정보와 음식명 등을 래퍼기반 웹 크롤러로 수집하였다. 그런 다음 빈도수가 낮은 음식메뉴와 레스토랑 온라인 리뷰에서 쓰이지 않는 음식메뉴를 제거하여 레스토랑 음식 메뉴 사전을 자동으로 구축하였다. 그리고 레스토랑 온라인 리뷰 문서를 이용해 음식 메뉴 사전의 엔티티들이 어느 유형의 레스토랑 리뷰에서 발견되는지를 찾아 빈도수를 구하고 분류 정보에 따른 비율을 사전에 추가하였다. 이 정보를 이용해 여러 분류 유형에 해당되는 음식메뉴를 구분할 수 있다. 실험 결과 한국관광공사 외국어 용례사전의 음식 메뉴명은 1,104개의 메뉴가 실제 레스토랑 리뷰에서 쓰인데 비해 본 논문에서 구축한 사전은 1,602개의 메뉴가 실제 레스토랑 리뷰에서 쓰여 498개의 어휘가 더 구성되어 있는 것을 확인 할 수 있었다. 이와 아울러, 자동으로 수집한 메뉴의 정확도와 재현율을 분석한다. 실험 결과 정확률은 96.2였고 재현율은 78.4, F-Score는 86.4였다.

  • PDF

BIT 표기법을 활용한 한국어 개체명 인식 (Korean Named Entity Recognition Using BIT Representation)

  • 윤호;김창현;천민아;박호민;남궁영;최민석;김재균;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.190-194
    • /
    • 2019
  • 개체명 인식이란 주어진 문서에서 개체명의 범위를 찾고 개체명을 분류하는 것이다. 최근 많은 연구는 신경망 모델을 이용하며 하나 이상의 단어로 구성된 개체명을 BIO 표기법으로 표현한다. BIO 표기법은 개체명이 시작되는 단어의 표지에 B(Beginning)-를 붙이고, 개체명에 포함된 그 외의 단어의 표지에는 I(Inside)-를 붙이며, 개체명과 개체명 사이의 모든 단어의 표지를 O로 간주하는 방법이다. BIO 표기법으로 표현된 말뭉치는 O 표지가 90% 이상을 차지하므로 O 표지에 대한 혼잡도가 높아지는 문제와 불균형 학습 문제가 발생된다. 본 논문에서는 BIO 표기법 대신에 BIT 표기법을 제안한다. BIT 표기법이란 BIO 표기법에서 O 표지를 T(Tag) 표지로 변환하는 방법이며 본 논문에서 T 표지는 품사 표지를 나타낸다. 실험을 통해서 BIT 표기법이 거의 모든 경우에 성능이 향상됨을 확인할 수 있었다.

  • PDF

위키피디아 기반 개체명 사전 반자동 구축 방법 (A Semi-automatic Construction method of a Named Entity Dictionary Based on Wikipedia)

  • 송영길;정석원;김학수
    • 정보과학회 논문지
    • /
    • 제42권11호
    • /
    • pp.1397-1403
    • /
    • 2015
  • 개체명은 다양한 자연어처리 연구 및 서비스에 중요한 정보로 이용된다. 개체명 인식의 성능을 향상시키기 위한 여러 연구에서 개체명 사전을 이용한 자질이 개체명 인식 성능에 큰 영향을 준다는 것을 보이고 있다. 그러나 개체명 사전을 구축하는 것은 매우 시간 소모적이고, 인력 소모적인 작업이다. 이를 완화하기 위해서 본 논문에서는 개체명 사전을 반자동으로 구축하는 방법을 제안한다. 제안 시스템은 능동학습을 이용하여 위키피디아 분류정보로 구성된 가상 문서를 개체명 범주 당 하나씩 생성한다. 그리고 잘 알려진 정보검색 모델인 BM25를 이용하여 위키피디아 엔트리와 가상문서 사이의 유사도를 계산한다. 마지막으로 유사도를 바탕으로 각 위키피디아 엔트리를 개체명 범주로 분류한다. 서로 다른 3종류의 개체명 범주 집합에서 실험한 결과, 제안 시스템은 매크로 평균 F1-점수 0.9028, 마이크로 평균 F1-점수 0.9554이라는 높은 성능을 보였다.

ELECTRA 모델을 이용한 음절 기반 한국어 개체명 인식과 슬롯 필링 (Syllable-based Korean Named Entity Recognition and Slot Filling with ELECTRA)

  • 도수종;박천음;이청재;한규열;이미례
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.337-342
    • /
    • 2020
  • 음절 기반 모델은 음절 하나가 모델의 입력이 되며, 형태소 분석을 기반으로 하는 모델에서 발생하는 에러 전파(error propagation)와 미등록어 문제를 회피할 수 있다. 개체명 인식은 주어진 문장에서 고유한 의미를 갖는 단어를 찾아 개체 범주로 분류하는 자연어처리 태스크이며, 슬롯 필링(slot filling)은 문장 안에서 의미 정보를 추출하는 자연어이해 태스크이다. 본 논문에서는 자동차 도메인 슬롯 필링 데이터셋을 구축하며, 음절 단위로 한국어 개체명 인식과 슬롯 필링을 수행하고, 성능 향상을 위하여 한국어 대용량 코퍼스를 음절 단위로 사전학습한 ELECTRA 모델 기반 학습방법을 제안한다. 실험 결과, 국립국어원 문어체 개체명 데이터셋에서 F1 88.93%, ETRI 데이터셋에서는 F1 94.85%, 자동차 도메인 슬롯 필링에서는 F1 94.74%로 우수한 성능을 보였다. 이에 따라, 본 논문에서 제안한 방법이 의미있음을 알 수 있다.

  • PDF

개인정보 비식별화를 위한 개체명 유형 재정의와 학습데이터 생성 방법 (Re-defining Named Entity Type for Personal Information De-identification and A Generation method of Training Data)

  • 최재훈;조상현;김민호;권혁철
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.206-208
    • /
    • 2022
  • 최근 빅데이터 산업이 큰 폭으로 발전하는 만큼 개인정보 유출로 인한 사생활 침해 문제의 관심도 높아졌다. 자연어 처리 분야에서는 이를 개체명 인식을 통해 자동화하려는 시도들이 있었다. 본 논문에서는 한국어 위키피디아 문서의 본문에서 비식별화 정보를 지닌 문장을 식별해 반자동으로 개체명 인식 데이터를 구축한다. 이는 범용적인 개체명 인식 데이터에 반해 비식별화 대상이 아닌 정보에 대해 학습되는 비용을 줄일 수 있다. 또한, 비식별화 정보를 분류하기 위해 규칙 및 통계 기반의 추가적인 시스템을 최소화할 수 있는 장점을 가진다. 본 논문에서 제안하는 개체명 인식 데이터는 총 12개의 범주로 분류하며 의료 기록, 가족 관계와 같은 비식별화 대상이 되는 정보를 포함한다. 생성된 데이터셋을 이용한 실험에서 KoELECTRA는 0.87796, RoBERTa는 0.88575의 성능을 보였다.

  • PDF

한국어 헬스케어 개체명 인식을 위한 거대 언어 모델에서의 형태소 기반 Few-Shot 학습 기법 (Morpheme-Based Few-Shot Learning with Large Language Models for Korean Healthcare Named Entity Recognition)

  • 강수연;김건우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.428-429
    • /
    • 2023
  • 개체명 인식은 자연어 처리의 핵심적인 작업으로, 특정 범주의 명칭을 문장에서 식별하고 분류한다. 이러한 기술은 헬스케어 분야에서 진단 지원 및 데이터 관리에 필수적이다. 그러나 기존의 사전 학습된 모델을 특정 도메인에 대해 전이학습하는 방법은 대량의 데이터에 크게 의존하는 한계를 가지고 있다. 본 연구는 방대한 데이터로 학습된 거대 언어 모델(LLM) 활용을 중심으로, 한국어의 교착어 특성을 반영하여 형태소 정보를 활용한 Few-Shot 프롬프트를 통해 한국어 헬스케어 도메인에서의 개체명 인식 방법을 제안한다.

KorBERT와 Popularity 정보에 기반한 한국어 개체연결 (Korean Entity Linking based on KorBERT and Popularity )

  • 허정;배경만;임수종
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.502-506
    • /
    • 2022
  • 본 논문에서는 KorBERT와 개체 인기정보(popularity)를 이용한 개체연결 기술을 소개한다. 멘션인식(mention detection)은 KorBERT를 이용한 토큰분류 문제로 학습하여 모델을 구성하였고, 개체 모호성해소(entity disambiguation)는 멘션 컨텍스트와 개체후보 컨텍스트 간의 의미적 연관성에 대한 KorBERT기반 이진분류 문제로 학습하여 모델을 구성하였다. 개체 인기정보는 위키피디아의 hyperlink, inlink, length 정보를 활용하였다. 멘션인식은 ETRI 개체명 인식기를 이용한 모델과 비교하였을 경우, ETRI 평가데이터에서는 F1 0.0312, 국립국어원 평가데이터에서는 F1 0.1106의 성능 개선이 있었다. 개체 모호성해소는 KorBERT 모델과 Popularity 모델을 혼용한 모델(hybrid)에서 가장 우수한 성능을 보였다. ETRI 평가데이터에서는 Hybrid 모델에서의 개체 모호성 해소의 성능이 Acc. 0.8911 이고, 국립국어원 평가데이터에서는 Acc. 0.793 이였다. 최종적으로 멘션인식 모델과 개체 모호성해소 모델을 통합한 개체연결 성능은 ETRI 평가데이터에서는 F1 0.7617 이고, 국립국어원 평가데이터에서는 F1 0.6784 였다.

  • PDF