• 제목/요약/키워드: 개질가스

검색결과 363건 처리시간 0.02초

Synthesis Gas Production via Partial Oxidation, CO2 Reforming, and Oxidative CO2 Reforming of CH4 over a Ni/Mg-Al Hydrotalcite-type Catalyst

  • Song, Hoon Sub;Kwon, Soon Jin;Epling, William S.;Croiset, Eric;Nam, Sung Chan;Yi, Kwang Bok
    • 청정기술
    • /
    • 제20권2호
    • /
    • pp.189-201
    • /
    • 2014
  • 합성가스를 생산하기 위한 부분산화, 이산화탄소 리포밍, 메탄에 의한 산화$CO_2$ 리포밍 공정들은 니켈 하이드로탈사이트($Ni_{0.5}Ca_{2.5}Al$) 촉매를 이용하여 수행되었고 안정한 이중층 구조를 형성시키기 위한 금속지지체(Mg, Ca)의 영향에 대해서도 다양한 연구가 진행되었다. 지지체전구물질(Mg, Ca)에 따라 메탄 리포밍의 안정성은 활성니켈이온과 지지체금속이온 사이의 결합강도차이에 의해 영향을 받는다. Ni-Mg-Al 구성체는 가장 안정한 하이드로탈사이트 이중층 구조이지만 Ni-Ca-Al 구성체는 그렇지 않다. 이산화탄소 리포밍 장기테스트에서 Ni-Mg-Al 촉매는 약 100시간 동안 80%의 효율을 유지하면서 탁월한 안정성을 보였지만 Ni-Ca-Al 촉매는 반응초기에 불활성화됨을 확인할 수 있었다. 활성금속 Ni과 지지체 Mg-Al 사이의 결합강도를 확인하기 위해 승온 환원(temperature-programmed reduction, TPR) 분석을 시행하였다. 이를 통해 Ni-Mg-Al 촉매가 Ni-Ca-Al 촉매보다 Ni의 환원온도가 더 높음을 확인할 수 있었다. $Ni_{0.5}Ca_{2.5}Al$ 촉매는 가장 높은 초기반응성을 보였지만 코크형성으로 인해 반응성이 빠르게 감소하였다. 결론적으로 $Ni_{0.5}Ca_{2.5}Al$ 촉매가 코크형성에 대한 강한 저항성을 갖고 있기 때문에 다른 촉매들보다 높은 반응성과 안정성을 갖는 것으로 보여진다.

핵융합 배가스 중 CQ4와 Q2O 처리공정 제안 및 HAZOP 분석 (Process Suggestion and HAZOP Analysis for CQ4 and Q2O in Nuclear Fusion Exhaust Gas)

  • 정우찬;정필갑;김정원;문흥만;장민호;윤세훈;우인성
    • Korean Chemical Engineering Research
    • /
    • 제56권2호
    • /
    • pp.169-175
    • /
    • 2018
  • 본 연구는 핵융합 배가스 중 삼중수소가 포함된 화합물인 메탄($CQ_4$) 및 물($Q_2O$)로부터 수소동위원소를 회수하기 위한 공정에 관한 것이다(Q는 수소, 중수소, 삼중수소). 수증기-메탄 개질반응과 수성가스 전환반응을 이용하여 $CQ_4$$Q_2O$$Q_2$로 변환시키고, 후속하는 팔라듐 분리막으로 생성된 $Q_2$를 회수한다. 본 연구에서는 $CQ_4$$Q_2O$ 중 하나의 물질인 $CH_4$$H_2O$로부터 수소 회수를 위해 촉매반응기, 팔라듐 분리막, 순환펌프로 구성된 순환루프를 적용하였다. 촉매반응온도 및 순환유량을 변화시켜가며 $CH_4$$H_2O$의 전환율을 측정하였다. $CH_4$ 중 수소 회수는 촉매반응온도 $650^{\circ}C$, 순환유량 2.0 L/min 조건에서 99% 이상의 $CH_4$ 전환율을확인하였고, $H_2O$ 중수소 회수는촉매반응온도 $375^{\circ}C$, 순환유량 1.8 L/min 조건에서 96% 이상의 $H_2O$ 전환율을 확인하였다. 이와 더불어, 향후 핵융합 실증로(K-DEMO)에서의 $CQ_4$ 발생량을 예측하고, 이에 대한 처리공정을 제안하였으며, HAZOP (Hazard and Operability) 분석을 실시하여 공정의 위험요소와 운전상의 문제점을 도출하고 해결방안을 제시하였다.

캐나다 아사바스카 오일샌드 지질특성 (Geology of Athabasca Oil Sands in Canada)

  • 권이균
    • 한국석유지질학회지
    • /
    • 제14권1호
    • /
    • pp.1-11
    • /
    • 2008
  • 오일샌드는 비재래형(unconventional) 석유자원의 하나로서 비투멘(bitumen), 물, 점토, 모래의 혼합물이다. 오일샌드 비투멘은 API 비중이 $8-14^{\circ}$이고 점도가 10,000 cP 이상인, 매우 무겁고 점성이 큰 탄화수소 자원으로서 일반적으로 지표나 천부퇴적층에서 유동성을 갖지 않는다. 오일샌드 비투멘은 주로 캐나다 앨버타주와 사스캐추완주에 분포하고 있으며, 캐나다에만 원시부존량이 1조 7천억 배럴, 확인매장량이 1천 7백억 배럴에 달한다. 대부분은 앨버타주 포트 멕머레이(Fort McMurray) 인근의 아사바스카(Athabasca), 콜드레이크(Cold Lake), 피스리버(Peace River) 지역에 매장되어 있다. 캐나다 오일샌드 저류지층은 아사바스카 지역의 멕머레이층(McMurray Fm)과 클리어워터층(Clearwater Fm), 콜드레이크 지역의 멕머레이층(McMurray Fm), 클리어워터층(Clearwater Fm), 그랜드래피드층(Grand Rapid Fm), 피스리버 지역의 블루스카이층(Bluesky Fm)과 게팅층(Gething Fm)이다. 이들 지층은 하부 백악기 지층으로서 중생대 초-중기에 발생한 북미판과 태평양판의 충돌과 그로 인한 대륙전면분지(foreland basin)의 형성과정에서 퇴적되었다. 분지의 기반암은 복잡한 지형을 갖는 고생대 탄산염암이며, 그 위에 북미대륙 북쪽의 보레알해(Boreal Sea)로부터 현재의 북미대륙 서부를 남북으로 관통하는 전기백악기내해로(Early Cretaceous Interior Seaway)를 따라 해침이 발생하면서 오일샌드 저류지층이 형성되었다. 세 개의 주요 오일샌드 분포지역 가운데 80% 이상의 오일샌드를 매장하고 있는 아사바스카 지역의 저류지층인 멕머레이층과 크리어워터층의 최하부층원인 와비스코 층원(Wabiskaw Mbr)은 전기 백악기 시기의 해침층서를 잘 반영하고 있다. 멕머레이층 하부에는 하성기원의 퇴적층이 발달하고, 상부로 가면서 점차로 조석기원의 천해 퇴적층이 우세해지며, 와비스코 층원에 와서는 의해 세립질 퇴적층이 광역적으로 분포한다. 이러한 해침기원의 상향 세립화 경향은 아사바스카 오일샌드 부존지역에서 일반적으로 관찰된다. 오일샌드 부존지층은 일반적으로 불균질 저류층이며, 주요 저류층은 하성퇴적층이나 에스츄어리(estuary) 기원의 퇴적층에 발달한 하도-포인트 바 복합체(channel-pont bar complex)이다. 이러한 하도-포인트바 복합체는 범람원 및 조수평원 세립질 퇴적층이나 만-충진(bay-fill) 퇴적층과 함께 멕머레이층을 형성한다. 멕머레이층 상부에 오는 와비스코 층원은 주로 외해 세립질 퇴적층으로 이루어져 있으나, 멕머레이층을 대규모로 침식하는 하도사암층이 지역적으로 발달하기도 한다. 캐나다에서 오일샌드는 주로 노천채굴(surface mining)과 심부열회수(in-situ thermal recovery) 방식으로 생산한다. 50 m 미만의 심도에 묻혀있는 오일샌드는 노천채굴 방식으로 회수하여 비투멘 추출(extraction)과 개질(upgrading)과정을 거쳐 합성원유(synthetic crude oil)로 생산된다. 반면에 150-450 m 심도에 묻혀있는 오일샌드는 주로 심부열회수 방식으로 비투멘을 회수하여 비교적 간단한 비투멘 블렌딩(blending)과정을 통해 유동성을 증가시켜 정유시설로 운반한다. 심부열회수 방식으로 오일샌드를 개발할 경우 주로 스팀주입중력법(SAGD: Steam Assisted Gravity Drainage)이나 주기적스팀강화법(CSS: Cyclic Steam Stimulation)이 사용된다. 이러한 방법들은 저류층에 스팀을 주입하여 저류층 내의 온도를 상승시킴으로써 비투멘의 유동성을 증가시켜 회수하는 기술을 사용한다. 따라서 오일샌드 저류층 내부의 스팀전파효율을 결정하는 저류지층의 주요 지질특성에 대한 이해가 선행되어야 효과적인 생산설계와 효율적인 생산을 수행할 수 있다. 오일샌드 생산에 영향을 미치는 저류층의 주요 지질특성에는 (1)비투멘 샌드층의 두께(pay) 및 연결성(connectivity), (2) 비투멘 함량, (3) 저류지역 지질구조, (4) 이질배플(mud baffle)이나 이질프러그(mud plug)의 분포, (5) 비투멘 샌드층에 협재하는 이질퇴적층의 두께 및 수평연장성(lateral continuity), (6) 수포화층(water-saturated sand)의 분포, (7) 가스포화층(gas-saturated sand)의 분포, (8) 포인트바의 성장방향성, (9) 속성층(diagenetic layer)의 분포, (10) 비투멘 샌드층의 조직특성 변화 등이 있다. 이러한 지질특성에 대한 고해상의 분석을 통해 보다 효과적인 오일샌드 개발이 달성될 수 있을 것이다.

  • PDF