• 제목/요약/키워드: 개입 모형

검색결과 282건 처리시간 0.028초

KOSPI 200예측에 있어서 개입시계열모형과 인공신경망모형의 성과비교

  • 양유모;하은호;오경주
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2003년도 추계학술대회 및 정기총회
    • /
    • pp.177-182
    • /
    • 2003
  • 많은 경제 시계열 자료 중에서 주가는 국내외 경제상황은 물론 정부정책 등 시장 외적인 영향에 가장 민감하게 반응한다. 하지만, 지금까지의 주가예측에 있어서는 이러한 외부의 영향, 즉 개입(Intervention)이 발생했을 때 주가의 변동에 능동적으로 대처하는 모형이 부재하였다. 실제로 이러한 개입사실을 예측모형에 반영하지 않는다면, 주가예측 있어 그 예측력을 따진다는 것은 무의미하다고 판단된다. 따라서, 개입시점을 발견하고, 이 개입효과를 측정하여 이를 모형에 반영한다면 좋은 예측결과를 얻을 수 있을 것이다. 이 연구에서는 이상점 탐지절차를 이용하여 개입 시점을 발견하고 개입의 효과가 개입시점에만 영향을 주는 모형과 효과가 일정기간 지속되는 모형으로 두 개의 개입시계열모형을 구축하고, 이러한 두 모형의 예측성과와 인공신경망모형을 이용한 예측성과를 비교하였다. 초단기예측(개입 직후 예측)에 있어서 개입의 효과가 지속되는 경우에는 개입시계열이 인공신경망보다 좋을 결과 를 나타내긴 했지만 그 차이는 크지 않았으며, 개입의 효과가 시점에만 영향을 준 경우에는 인공신경망의 결과가 더 우수한 것으로 나타났다. 단기예측(개입 후 20 일후의 예측)에 있어서는 개입 효과의 지속여부에 상관없이 인공신경망이 개입시계열모형보다 우수한 것으로 나타났다.

  • PDF

개입 분석 모형 예측력의 비교분석 (Combination Prediction for Nonlinear Time Series Data with Intervention)

  • 김덕기;김인규;이성덕
    • 응용통계연구
    • /
    • 제16권2호
    • /
    • pp.293-303
    • /
    • 2003
  • 개입효과가 포함된 시계열 자료에 대한 여러 시계열 모형에 의한 예측 방법들이 비교 분석된다. 개입이 있는 선형 ARIMA 모형, 비선형 ARCH 모형 및 개입이 있는 비선형 ARCH 모형 그리고 TONG 이 제안한 결합예측방법들이 소개되고, 실증분석으로 개입이 있다고 생각되는 한국건축허가면적 자료로부터 그 예측 수월성이 비교된다.

개입 승법계절 ARIMA와 인공신경망모형을 이용한 해상운송 물동량의 예측 (Forecasting the Seaborne Trade Volume using Intervention Multiplicative Seasonal ARIMA and Artificial Neural Network Model)

  • 김창범
    • 한국항만경제학회지
    • /
    • 제31권1호
    • /
    • pp.69-84
    • /
    • 2015
  • 본고는 개입 승법계절 ARIMA모형과 인공신경망모형을 이용하여 해상운송 물동량을 추정하고 사전적 예측치를 도출하였다. 개입 ARIMA의 추정결과 오차항에서 자기상관이 존재하지 않고 정규성이 존재함으로써 오차항의 기본가정이 잘 충족되고 있음을 확인하였다. 그리고 개입 승법계절 ARIMA모형과 인공신경망모형에 대해 예측실적 오류를 ME, MAE, RMSE, MSE로 측정한 결과 ARIMA $(2,1,0)(1,0,1)_{12}$이 가장 우수한 예측모형임을 확인할 수 있었다. 2015년부터 2019년까지의 기간에 대해 개입 ARIMA모형을 이용한 해상운송 물동량의 사전적 예측치 결과 4.54%에서 4.99%의 연평균 증가율을 보였고, 인공신경망모형을 이용한 예측결과 2.00%에서 2.44%까지의 연평균 증가율을 나타냈다.

개입모형을 이용한 한국의 입출국자 수의 분석 (Intervention Analysis of Korea Tourism Data)

  • 김수용;성병찬
    • 응용통계연구
    • /
    • 제24권5호
    • /
    • pp.735-743
    • /
    • 2011
  • 본 논문에서는 개입모형(intervention model)을 이용하여 한국의 입출국자 시계열 자료를 분석한다. 개입분석을 위하여 1997년 12월의 IMF 구제금융사건, 2003년의 3월의 SARS 발생, 그리고 2008년의 9월의 리먼브라더스 사태를 개입변수로 고려하였다. 그 결과, 한국의 총 입국자 수에는 SARS 개입변수만이 2003년 4월부터 영향을 미치기 시작하여 2003년 5월부터 급격하게 감소하는 영향을 미친 것으로 나타났다. 반면, 한국의 총 출국자 수에는 모든 3가지 개입의 효과가 유의하게 나타났으며 특히 IMF 개입변수는 1997년 12월부터 영구적인 영향을 미친 것으로 보이며 SARS 및 리먼브라더스 개입변수는 점차로 감소하는 영향을 미친 것으로 나타났다.

주택가격지수 예측모형에 관한 비교연구 (A study on the forecasting models using housing price index)

  • 임성식
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권1호
    • /
    • pp.65-76
    • /
    • 2014
  • 주택가격은 정부의 부동산 정책이나 국내외의 경기상황과 같은 외부충격요인에 따라 많은 영향을 받는다. 본 연구에서는 주택가격지수 예측을 위한 모형구축에서 중요한 요인은 외부충격요인으로 이를 개입효과라 하며, 이 외부요인들이 주택가격지수에 미치는 영향을 파악하고 향후 주택가격지수를 효율적으로 예측하기 위한 시계열모형을 찾는데 있다. 실제 자료를 이용하여 분석한 예측결과 개입모형이 다른 모형에 비해 우수한 것으로 나타났다.

SIR 모형을 이용한 한국의 코로나19 확산에 대한 개입 효과 분석 (Intervention analysis for spread of COVID-19 in South Korea using SIR model)

  • 조수민;김재직
    • 응용통계연구
    • /
    • 제34권3호
    • /
    • pp.477-489
    • /
    • 2021
  • 코로나19 바이러스는 2020년에 전세계적으로 심각하게 확산되었고, 우리의 일상생활 전체에 상당한 영향을 미치고 있다. 현재 전세계는 이 유행병 사태 아래에 여전히 있고 한국 또한 이 상황에 대해 예외가 아니다. 이 유행병 기간동안 한국에서는 이 바이러스 확산을 방지하기 위한 또는 가속화시킨 몇 가지 사건들이 있었다. 감염병에 대한 방역 정책을 세우기 위해 이러한 사건들의 감염병 확산에 대한 개입 효과를 조사하는 것은 매우 중요하다. SIR 모형은 미분방정식을 통해 감염병 확산의 동적 행태를 파악하기 위해 자주 사용되는 방법이다. 그러나, SIR 모형은 관찰된 데이터의 불확실성을 고려하지 않는 결정적인 모형이다. 따라서 SIR 모형에서 데이터의 불확실성을 고려하기 위해 베이지안 접근법이 사용될 수 있고, 이러한 접근법은 SIR 모형에서 감염률에 대한 시간변이함수에 근거한 개입효과분석을 가능하게 한다. 본 연구에서는 베이지안 접근법에 근거한 확률적 SIR 모형을 이용하여 한국에서의 코로나19 바이러스의 확산 추세를 설명하고 그러한 사건들에 대한 개입효과를 조사한다.

다중개입 계절형 ARIMA 모형을 이용한 KTX 수송수요 예측 (KTX passenger demand forecast with multiple intervention seasonal ARIMA models)

  • 차효영;오윤식;송지우;이태욱
    • 응용통계연구
    • /
    • 제32권1호
    • /
    • pp.139-148
    • /
    • 2019
  • 본 연구는 KTX 수송수요를 예측하기 위한 방법으로 다중개입 시계열 모형을 제안하였다. 구체적으로 2011년 이전의 자료로서 경부 2단계 개통 개입만 고려한 Kim과 Kim (Korean Society for Railway, 14, 470-476, 2011)의 연구를 수정 보완하기 위해 다양한 개입이 추가적으로 발생하고 있는 2011년 이후의 시계열 자료를 효과적으로 모델링하는 한편 KTX 수송수요를 정확히 예측하기 위한 방법으로 다중개입 계절형 ARIMA 모형을 도입하였다. 자료 분석을 통해 KTX 수송수요에 영향을 주었던 경부 및 호남 2단계 개통, 메르스 발병과 설추석 명절 등 다양한 개입의 효과를 효과적으로 해석하는 한편, 이를 통해 예측의 정확성을 높일 수 있음을 확인하였다.

주가지수선물 도입이 주식시장에 미치는 개입효과

  • 양성국;문성주
    • 재무관리연구
    • /
    • 제15권1호
    • /
    • pp.165-181
    • /
    • 1998
  • 1987년 10월 미국의 주가폭락과 1990년대 일본주식시장의 지속적 침체 이후로 미국과 일본 등의 주식시장에서는 주식시장의 변동성 증대 및 침체의 원인으로서 주가지수선물이 주목받기 시작하였다. 1987년 주가대폭락을 연구한 브레디보고서에는 주가지수선물과 이를 이용한 포트폴리오보험전략이 주가폭락의 한 요인으로 지목되고 있으며, 일본의 경우 장기적인 주식시장 침체가 주가지수선물에 기인한다는 생각이 일반화되어 있다. 본 연구는 우리나라에서 1996년 5월 3일부터 시작된 주가지수선물거래 도입이 주식시장에 미치는 개입효과를 분석하는데 목적이 있다. 본 연구의 목적을 위하여 Box와 Tiao(1975)에 의해 제시된 개입분석모형(intervention analysis model)을 이용하여 분석한 결과 개입의 효과가 전체 모형 설정에 유의한 영향을 미치지 않음을 알 수 있었다. 따라서 우리나라의 경우 주가지수선물거래 도입이 주식시장에 미치는 개입효과는 미미하다고 할 수 있다.

  • PDF

개입 ARIMA 모형을 이용한 KTX 수요예측 (KTX Passenger Demand Forecast with Intervention ARIMA Model)

  • 김관형;김한수
    • 한국철도학회논문집
    • /
    • 제14권5호
    • /
    • pp.470-476
    • /
    • 2011
  • 본 연구는 KTX 수요를 예측하기 위한 방법으로 개입 ARIMA 모형을 제안하였다. 신선개통과 경제충격으로 인한 시계열의 영향 여부를 파악하기 위해 경부고속철도 2단계 개통과 2008년 금융위기를 분석하였다. 분석결과 금융위기는 통계적으로 유의미한 영향이 없는 것으로 나타났으나, 경부고속철도 2단계는 주중 통행량 17,000 통행/일, 주말 통행량 26,000 통행/일 정도 증가한 것으로 나타났다. 본 연구는 개입이 통행량 시계열에 영향을 미치는 현상을 파악하고, 시계열 자료에 대한 개입효과를 계량적으로 분석했다는 점에서 의의가 있다. 개발된 모형은 KTX 전체 수요를 개략적으로 예측하는데 활용될 수 있으며, KTX O/D별 예측치를 검증하는데 활용이 가능하다.

시계열모형에 의한 전력판매량 예측 (Prediction of Electricity Sales by Time Series Modelling)

  • 손영숙
    • 응용통계연구
    • /
    • 제27권3호
    • /
    • pp.419-430
    • /
    • 2014
  • 전력수급의 정확한 예측은 국민들의 일상적 생활 유지, 산업활동, 그리고 국가경영을 위하여 매우 중요하다. 본 연구에서는 시계열모형화에 의해 전력판매량을 예측한다. 실제 자료분석을 통하여 입력시계열로서 냉난방도일과 개입변수로 펄스함수를 사용한 전이함수모형이 다른 시계열모형에 비해서 제곱근평균제곱오차 및 평균절대오차의 의미에서 더 우수하였다.