산업혁신의 흐름에 발맞추어 다양한 분야에서 활용되고 있는 IoT 기술은 빅데이터의 접목을 통한 새로운 비즈니스 모델의 창출 및 사용자 친화적 서비스 제공의 핵심적인 요소로 부각되고 있다. 사물인터넷이 적용된 디바이스에서 누적된 데이터는 사용자 환경 및 패턴 분석을 통해 맞춤형 지능 시스템을 제공해줄 수 있어 편의 기반 스마트 시스템 구축에 다방면으로 활용되고 있다. 최근에는 이를 공공영역 혁신에 확대 적용하여 CCTV를 활용한 교통 범죄 문제 해결 등 스마트시티, 스마트 교통 등에 활용하고 있다. 그러나 이미지 데이터를 활용하는 기존 연구에서는 개인에 대한 사생활 침해 문제 및 비(非)일반적 상황에서 객체 감지 성능이 저하되는 한계가 있다. 본 연구에 활용된 IoT 디바이스 기반의 센서 데이터는 개인에 대한 식별이 불필요해 사생활 이슈로부터 자유로운 데이터로, 불특정 다수를 위한 지능형 공공서비스 구축에 효과적으로 활용될 수 있다. 대다수의 국민들이 일상적으로 활용하는 도시철도에서의 지능형 보행자 트래킹 시스템에 IoT 기반의 적외선 센서 디바이스를 활용하고자 하였으며 센서로부터 측정된 온도 데이터를 실시간 송출하고, CNN-LSTM(Convolutional Neural Network-Long Short Term Memory) 알고리즘을 활용하여 구간 내 보행 인원의 수를 예측하고자 하였다. 실험 결과 MLP(Multi-Layer Perceptron) 및 LSTM(Long Short-Term Memory), RNN-LSTM(Recurrent Neural Network-Long Short Term Memory)에 비해 제안한 CNN-LSTM 하이브리드 모형이 가장 우수한 예측성능을 보임을 확인하였다. 본 논문에서 제안한 디바이스 및 모델을 활용하여 그간 개인정보와 관련된 법적 문제로 인해 서비스 제공이 미흡했던 대중교통 내 실시간 모니터링 및 혼잡도 기반의 위기상황 대응 서비스 등 종합적 메트로 서비스를 제공할 수 있을 것으로 기대된다.
이 연구는 빅데이터 마이닝에 기초하여 공시지가 민원에 대한 시공간적 특성을 분석하는 모델을 제시하는 데 목적이 있다. 특히 이 연구는 행정 민원이 제기되는 원인을 학술적 요인보다는 시공간적 측면에서 찾았고, 그러한 민원 발생의 경향을 시공간적으로 모니터링하는 모델을 제시하였다. 2006년부터 2015년까지 인천광역시 중구의 공시지가에 대한 6,481개의 민원정보가 시간 및 공간적 특성을 고려해 수집되었고 분석을 위해 사용되었다. 텍스트 마이닝 기법을 이용해 주요 키워드의 빈도수를 도출했으며, 소셜 네트워크 분석을 통해 주요 키워드 간의 관계를 분석하였다. 키워드의 가중치와 연관되는 TF(term frequency)와 TF-IDF(term frequency-inverse document frequency)를 산출함으로써, 공시지가의 민원 발생에 대한 주요 키워드를 식별하였다. 마지막으로 Getis-Ord의 $Gi^*$의 통계량에 기초한 핫스팟 분석을 통해 공시지가 민원의 시공간적 특성을 분석하였다. 연구 결과, 공시지가 민원의 특성은 시공간적으로 연계된 군집 형태를 형성하면서 변화하고 있음을 알 수 있었다. 텍스트 마이닝과 소셜 네트워크 분석 방법을 이용하여 자연어 기반의 공시지가 민원에 대한 발생 원인을 정량적으로 규명할 수 있음을 알 수 있었으며, 키워드 가중치인 단어 빈도(TF) 및 단어 빈도와 역문서 빈도의 조합값(TF-IDF)의 상대적인 차이가 있어 시공간적인 민원 특성을 분석하기 위한 주요 설명변수로 활용될 수 있음을 알 수 있었다.
골다공증은 전 세계적으로 주요한 건강 문제임에도 불구하고, 골절 발생 전까지 쉽게 발견되지 않는 단점을 가지고 있습니다. 본 연구에서는 골다공증 조기 발견 능력 향상을 위해, 복부 컴퓨터 단층 촬영(Computed Tomography, CT) 영상을 활용하여 정상-골감소증-골다공증으로 구분되는 골다공증 단계를 체계적으로 분류할 수 있는 딥러닝(Deep learning, DL) 시스템을 개발하였습니다. 총 3,012개의 조영제 향상 복부 CT 영상과 개별 환자의 이중 에너지 X선 흡수 계측법(Dual-Energy X-ray Absorptiometry, DXA)으로 얻은 T-점수를 활용하여 딥러닝 모델 개발을 수행하였습니다. 모든 딥러닝 모델은 비정형 이미지 데이터, 정형 인구 통계 정보 및 비정형 영상 데이터와 정형 데이터를 동시에 활용하는 다중 모달 방법에 각각 모델 구현을 실현하였으며, 모든 환자들은 T-점수를 통해 정상, 골감소증 및 골다공증 그룹으로 분류되었습니다. 가장 높은 정확도를 갖는 모델 우수성은 비정형-정형 결합 데이터 모델이 가장 우수하였으며, 수신자 조작 특성 곡선 아래 면적이 0.94와 정확도가 0.80를 제시하였습니다. 구현된 딥러닝 모델은 그라디언트 가중치 클래스 활성화 매핑(Gradient-weighted Class Activation Mapping, Grad-CAM)을 통해 해석되어 이미지 내에서 임상적으로 관련된 특징을 강조했고, 대퇴 경부가 골다공증을 통해 골절 발생이 높은 위험 부위임을 밝혔습니다. 이 연구는 DL이 임상 데이터에서 골다공증 단계를 정확하게 식별할 수 있음을 보여주며, 조기에 골다공증을 탐지하고 적절한 치료로 골절 위험을 줄일 수 있는 복부 컴퓨터 단층 촬영 영상의 잠재력을 제시할 수 있습니다.
붉은귀거북(Trachemys) 속 전종이 2001년 환경부의 생태계교란생물로 지정되어 수입이 금지되어 있지만 대부분의 외래거북 국내 도입과 자연생태계 서식 현황은 아직까지 알려지지 않았다. 본 연구는 국내에 도입된 외래거북의 종류와 서식 실태를 밝히고 자연생태계에 대한 영향 및 향후 관리방향을 제시하고자 수행되었다. 외래거북은 국내에 총 9과 73종이 도입되었으며, 2008년 이후 연간 6,000kg 이상의 거북이 수입되어 동물판매업체와 재래시장, 개인 간 거래를 이용하여 전국적으로 유통되었다. 자연생태계 서식현황을 조사한 결과, Chrysemys picta, Pseudemys concinna, P. nelsoni, P. peninsularis, P. rubriventris, Mauremys sinensis, Macrochelys temminckii, Trachemys scripta 등 3과 8종이 발견되었다. 국내에 도입된 외래거북 중 국외의 침입외래생물 관리 및 지정 현황을 검토하여 자라과(Trionychidae), 남생이과(Geoemydidae), 늪거북과(Emydidae), 늑대거북과(Chelydridae)에 속하는 4과 13종을 외부 유출과 자연생태계 유입 관리가 필요한 외래거북으로 구분했다. 외래거북의 효과적 관리를 위해서는, 수입되는 외래거북은 수입목록에 등재하고, 수입목적, 유통, 관리실태 등 종합적인 정보를 관련 기관에서 공유해야 한다. 사육 및 유통자는 거북의 식별조치 및 관리기록을 의무화하고 관리기관은 거북의 이동 및 양도 상황을 주기적으로 점검하여 유입과 확산을 조기에 제어할 필요가 있다. 그리고 자연 서식하는 외래거북 개체군의 변화를 정기적으로 조사하고, 확산으로 인한 생태적 영향이 큰 도서지역 및 생태경관보전지역 등의 지역에서는 즉각적인 관리계획을 수립하여 시행하는 등 적극적인 대응이 필요하다. 또한, 국내 유입된 외래거북은 생태계에 대한 정기적 위해성평가를 통해 필요시 생태계교란 생물로 지정하고, 본 연구에서 외부 유출 및 자연생태계에 대한 유입관리가 필요한 것으로 제시한 4과 13종을 포함한 자연생태계 미유입 외래거북은 필요시 위해우려종에 포함하는 등 법제적 관리를 검토할 필요가 있다.
본 연구는 microsatellite marker를 이용하여 국내에서 사육되고 있는 칡소 9지역 간의 유전적 거리 분석 및 계통 지도 작성 등의 계통유전학적 분석을 실시하였다. 11종의 MS 마커를 이용하여 대립유전자의 수(No. of allele)를 확인한 결과 8에서 24개로 확인되었으며, 기대이형접합율(expected heterozygosity, Hexp)은 0.672에서 0.834 범위 안에 나타났으며, 관측이형접합율(observed heterozygosity, Hobs)은 0.687에서 0.886, 다형성정보지수(Polymorphism information content, PIC)은 0.638에서 0.876로 확인되었다. 무작위 교배집단(Random)으로 가정하였을 경우 동일개체 출현빈도는 11개의 marker를 사용하였을 때, 5.24×10−19 빈도로 출현하는 것을 확인 할 수 있었으며, 반형매 교배집단(Half-sib)과 전형매 교배집단(sib)으로 가정했을 경우에는 2.63×10−06, 2.63×10−06으로 각각 확인되었다. 이러한 결과는 칡소의 개체식별 및 친지확인 marker로 11종의 MS marker가 충분히 활용 가능할 것으로 사료된다. Phylogenetic tree (Neighbor-Joining tree), Principle Component Analysis (PCA) 그리고 Factorial Component Analysis (FCA) 분석을 통해 9 지역의 칡소 집단 간의 유연관계를 확인하였다. 이러한 결과는 칡소 품종을 중요한 가축유전자원으로써 인식하고 국내 타 품종과의 유전적 차별화와 순수성 보존과 능력을 개량하는데 있어 기초 자료로 활용 가능할 것으로 사료된다.
누구나 본인이 사용한 제품이나, 이용한 서비스에 대한 후기를 자유롭게 인터넷에 작성할 수 있고, 이러한 데이터의 양은 점점 더 많아지고 있다. 감성분석은 사용자가 생성한 온라인 텍스트 속에 내포된 감성 및 감정을 식별하기 위해 사용된다. 본 연구는 다양한 데이터 도메인 중 영화 리뷰를 분석 대상으로 한다. 영화 리뷰를 이용한 기존 연구에서는 종종 리뷰 평점을 관객의 감성으로 동일시하여 감성분석에 이용한다. 그러나 리뷰 내용과 평점의 실제적 극성 정도가 항상 일치하는 것은 아니기 때문에 연구의 정확성에 한계가 발생할 수 있다. 이에 본 연구에서는 기계학습 기반의 감성 분류기를 구축하고, 이를 통해 리뷰의 감성점수를 산출하여 리뷰에서 나타나는 감성의 수치화를 목표로 한다. 나아가 산출된 감성점수를 이용하여 리뷰와 영화 흥행 간의 연관성을 살펴보았다. 감성분석 모델은 지지벡터 분류기와 신경망을 이용해 구축되었고, 총 1만 건의 영화 리뷰를 학습용 데이터로 하였다. 감성분석은 총 175편의 영화에 대한 1,258,538개의 리뷰에 적용하였다. 리뷰의 평점과 흥행, 그리고 감성점수와 흥행과의 연관성은 상관분석을 통해 살펴보았고, t-검정으로 두 지표의 평균차를 비교하여 감성점수의 활용성을 검증하였다. 연구 결과, 본 연구에서 제시하는 모델 구축 방법은 나이브 베이즈 분류기로 구축한 모델보다 높은 정확성을 보였다. 상관분석 결과로는, 영화의 주간 평균 평점과 관객 수 간의 유의미한 양의 상관관계가 나타났고, 감성점수와 관객 수 간의 상관분석에서도 유사한 결과가 도출되었다. 이에 두 지표간의 평균을 이용한 t-검정을 수행하고, 이를 바탕으로 산출한 감성점수를 리뷰 평점의 역할을 할 수 있는 지표로써 활용 가능함을 검증하였다. 나아가 검증된 결론을 근거로, 트위터에서 영화를 언급한 트윗을 수집하여 감성분석을 적용한 결과를 살펴봄으로써 감성분석 모델의 활용 방안을 모색하였다. 전체적 실험 및 검증의 과정을 통해 본 연구는 감성분석 연구에 있어 개선된 감성 분류 방법을 제시할 수 있음을 보였고, 이러한 점에서 연구의 의의가 있다.
운영체제의 가상 메모리 시스템에 적용할 페이지 교체 정책은 요구 페이징 시스템의 성능에 큰 영향을 미친다. 대표적인 메모리 페이지 교체 정책으로는 LRU와 LFU가 있다. LRU 정책은 많은 경우에 좋은 성능을 보이며 시스템 부하 변화에 잘 적응하지만, 자주 참조되는 페이지와 가끔 참조되는 페이지를 구별하지 못한다. LFU 정책은 참조 횟수가 가장 작은 페이지를 교체하는 기법으로, 과거의 모든 참조를 반영하지만 이전에 참조된 페이지와 최근에 참조된 페이지를 식별하지 못한다. 따라서 LFU는 변화하는 작업 부하에 잘 적응하지 못한다. 본 논문에서는 먼저 8개의 응용에 대해 메모리 참조 패턴을 분석하여 보았다. 그 참조 패턴을 보면 어떤 경우에는 최근에 참조된 페이지가 계속 참조되며, 또 다른 경우에는 자주 참조되는 페이지가 계속 참조되는 경향이 있다. 즉, 응용에 의해 참조되는 메모리 페이지는 최근성과 참조 횟수 모두에 의해 가치가 결정되며, LRU나 LFU 정책 한 가지만으로는 페이지 교체 정책을 최적화하기 어렵다. 따라서 본 논문에서는 LRU 기법과 LFU 기법을 결합한 새로운 교체 기법을 제안한다. 제안한 기법에서는 페이지 리스트를 LRU 리스트와 LFU 리스트를 나누어 관리하는데, 이 두 리스트에서는 각각 최근성과 참조 횟수를 기반으로 페이지 리스트 순서가 유지된다. 과거에 자주 참조되었던 페이지가 LRU 정책에 의해 교체되어 빠져나가는 경우를 LFU 정책 병행 사용을 통해 줄임으로써, 최근성 가치에 의해 참조 횟수 가치가 훼손되는 경우를 줄인다. 트레이스-기반 시뮬레이션 결과, 제안 기법이 이전에 알려진 페이지 교체 기법보다 좋은 성능을 보일 때가 있음을 확인하였는데, 특히, 과거에 자주 참조했던 페이지를 일정 시간 경과한 후에 다시 참조하는 패턴을 보이는 응용들에서 제안 기법이 기존의 기법들보다 우수하다는 것을 알 수 있었다.
선인출은 데이타베이스 관리 시스템에서 클라이언트와 서버 사이에 발생하는 라운드트립을 줄 일 수 있는 효과적인 방법이다. 본 논문에서는 타입수준 액세스 패턴과 타입수준 지역성이라는 새로운 개 념을 제시하고, 이 개념에 기반한 새로운 선인출 방법을 제시한다. 타입수준 액세스 패턴이란 항해에 사 용된 애트리뷰트들의 패턴이며, 타입수준 엑세스 지역성이란 항해 응용에서 타입수준 액세스 패턴이 반복 적으로 나타나는 현상이다. 기존의 선인출 방법은 항해 응용에서 액세스된 객체 흑은 페이지 식별자들간의 패턴인 객체수준 혹은 페이지수준 액세스 패턴을 선인룰에 이용하는데, 이 방법은 동일한 객체 혹은 페이 지들이 반복적으로 액세스될 때에만 선인출 효과를 가지는 문제점이 있다. 이에 반해 제안하는 방법은 항 해 응용에서 같은 객체들이 반복적으로 액세스되지 않더라도 같은 애트리뷰트들이 반복적으로 참조되는 경우. 즉, 타입수준 액세스 지역성이 존재하면, 효과적인 선인출을 수행하는 장점이 있다 객체관계형 DHMS(ORDBMS)의 많은 항해 응용들은 타입수준 액세스 지역성이 있다 따라서, 제안하는 방법을 ORDBMS에 적용하면 라운드트립의 횟수를 효과적으로 줄일 수 있고 성능을 크게 향상시킬 수 있다. 제 안하는 방법의 우수성을 증명하기 위해, ORDBMS 프로토타입에 구현하여 많은 종류의 실험을 수행하였 다. 실험결과, 복잡한 구조를 탐색하는 007 벤치마크나 실제 GIS 응용에서, 제안하는 선인출 방법은 단순 한 요구인출 방법 및 최근의 문맥 기반 선인출 방법과 비교하여 라운드트림 횟수를 수십 배에서 수백배가 지 줄이고 성능을 수배가지 향상시켰다. 이와 같은 결과로 볼 때, 제안하는 방법은 객체지향 항해 응용의 성능을 크게 향상시키는 결과로서, 상용 ORDBMS에 구현될 수 있는 실용적인 결과라 믿는다.
본 논문에서는 4차 산업혁명 핵심기술 중 가장 활발하게 산업화가 진행되고 있는 사물인터넷 산업을 대상으로 비즈모델 혁신방향 중심의 연구를 수행하였다. 글로벌 트렌드 분석을 위해 PEST분석을 활용하여 정책적, 경제적, 사회적, 기술적 이슈를 도출하였고, Gartner, International Data Corporation 등 ICT관련 조사 분석기관의 사물인터넷산업에 대한 미래전망을 제시하였는데, 사물인터넷은 인프라 및 플랫폼을 기반으로 산업인터넷(IIoT), 소물인터넷(IoST) 등으로 네트워크 기술경쟁이 이슈가 될 것으로 전망하였다. 4차 산업혁명으로 인해 급변하는 산업계에 대응하기 위해 기존의 비즈니스 모델 혁신을 위한 다양한 경영학적 방법론들을 검토하였고, '적용성', '민첩성', '다양성', '연계성' 4가지 기준을 가지고 전문가 설문조사를 수행하여 Business Model Canvas 모델이 비즈니스 모델 혁신 방법론으로 가장 적합하다는 AHP 분석결과를 도출하였다. Business Model Canvas는 비즈니스 모델 혁신을 위한 방법론으로 비교적 최근에 제시된 경영전략이며, 9개의 블록 접근 방식을 통해 비즈니스모델의 가치를 식별하며, 비즈니스의 4대 핵심 영역인 고객, 주문, 인프라, 사업타당성 분석 등을 포괄한다. 결론적으로 ICT융합산업 분야에서 어떠한 Business Model Canvas 모델을 방향으로 적용할지에 대한 고찰을 기술하였다.
연구목적: 본 논문은 이러한 국가중요시설에서의 드론테러 위협과 대응실태를 분석하여 문제점을 도출함으로써 안티드론시스템을 실효적으로 활용하기 위한 법·제도적인 발전방안을 제시하는 데에 연구의 목적으로 두었다. 연구방법: 연구방법은 질적연구방법으로서 기존 선행연구논문, 정책자료 등에서 다루지 못한 다양한 문제점들을 전문가 심층면담을 통해 분석하였다. 심층면담을 위한 연구참여자는 국내 안티드론 및 테러분야 전문가 16명을 선정하여 반구조화 인터뷰 12개 문항을 토대로 진행하였다. 면담내용은 연구참여자들의 사전 동의 하에 녹취를 하고 이를 다시 한글파일로 전사한 후, 코딩작업을 통해 문제점 및 개선방안을 도출하였다. 이러한 토대를 만들기 위해 해외에서 발생한 드론테러 사례를 바탕으로 그 위협과 유형을 분석하고, 국내 드론테러 발생 개연성을 평가하여 안티드론시스템 구축방안을 법·제도적 관점에서 살펴보았다. 연구결과:연구결과 현재 우리나라 국가중요시설 드론테러에 대해 효과적으로 대응하기 위해서 선행되어야 할 몇 가지 문제점에 대한 개선사항이 식별되었다. 첫째, 국가중요시설 및 드론테러에 관한 용어를 명확히 재정립하여 이들을 「통합방위법」 및 「테러방지법」등의 법률에 반영해야 한다. 둘째, 국가중요시설 방호개념을 현재의 지상위주의 방호에서 공중위협을 고려한 3차원적 방호개념으로 전환하고 안티드론시스템 구축에 관한 사항을 「통합방위법」에 구체화하여 반영해야 한다. 셋째, 「국가중요시설 상공에 대한 비행금지 특별법」을 제정하는 것이다. 이를 위해 비행금지 대상시설 지정을 확대하되, 비행금지 설정범위는 최소화하여 '드론산업발전'과 '국가중요시설 보호'라는 양 날개가 균형적으로 발전할 수 있도록 법률을 개정해야 한다. 넷째, 불법비행 대응체계 정립 및 관련제도 개선이다. 예컨대 일반적인 사항에 대해서는 통일된 매뉴얼을 갖추되, 각 시설별 특성에 맞게 맞춤형으로 차별화하고 이에 대한 전문인력 확충, 대응훈련 강화 등을 통해 통해 철저한 대비를 해야 하다. 결론:본 연구의 결과에 따라, 향후 국가중요시설에서의 드론테러 및 불법드론에 대한 대응능력을 갖추고 안티드론시스템을 실효적으로 활용할 수 있도록 법 및 제도적인 뒷받침과 정책발전의 방향성을 제시하는데 함의가 있다고 할 수 있겠다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.