• 제목/요약/키워드: 개인추천

검색결과 840건 처리시간 0.023초

OTT 개인화 추천 서비스에서의 개인 정보제공 의도에 미치는 선행요인 연구: 5요인 성격모형의 적용 (Precedents Affecting the Intention to Disclose Personal Information in Personalized Recommendation Service of OTT: Application of Big-Five Personality Model)

  • 김유진;이형석
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.209-210
    • /
    • 2023
  • 본 연구에서는 OTT 개인화 추천 서비스에서 5요인 성격이론을 적용하여 사용자들의 정보 프라이버시 염려에 관한 영향을 미치는 요인을 파악하고 프라이버시 염려와 개인정보 제공의도와의 관계에 관한 가설을 도출하였다. OTT 개인화 추천 서비스의 정보 프라이버시 염려에 영향을 미치는 요인으로 성격이론인 친화성, 정서적 불안정성, 성실성, 외향성, 경험에 대한 개방성 다섯 가지 요인을 도출하였으며, OTT 추천 서비스의 특성인 추천서비스의 정확성, 추천서비스의 다양성, 추천 서비스의 신기성 세 가지 요인을 도출하였다. 본 연구는 5요인 성격이론을 OTT 개인화 추천서비스 연구에 적용하였다는 데 의의가 있을 뿐만 아니라, OTT 기업들이 사용자의 정보 프라이버시 염려 행동을 이해하는 데에 도움을 줄 것으로 기대한다.

  • PDF

Spark GraphX를 활용한 개인 추천 시스템 개발 (A Development of Personalized Recommendation System using Spark GraphX)

  • 김성숙;박기진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.41-43
    • /
    • 2018
  • 소설 데이터는 인터넷 상의 수 많은 개인과 개인의 상호 작용에 의하여 연결되어 있으며, 이러한 데이터를 분석하여, 분석 대상에 내재하고 있는 구조와 특성을 파악하는 일은 중요하다. 특히, 개인 추천을 위해서는 개별 데이터들의 관계 그래프를 활용하여 빠르고 정확하게 추천 값을 도출하는 것이 효율적이다. 하지만, 기존 추천 기법으로는 신규 사용자와 아이템이 끊임없이 등장하는 상황을 즉각적으로 반영하기가 어렵고, 또한 많은 결측값을 포함하는 sparse 한 데이터일 경우에는 추천 시스템의 연산 공간과 시간에 많은 제약이 있다. 이에 본 논문에서는 Spark GraphX 를 활용한 개인 추천 시스템을 설계 및 개발하였으며, 이를 통하여 사용자와 아이템간에 내재하는 복합 요인이 반영된 그래프 기반 추천을 실행하여, 개인 추천 결과의 우수성을 확인하였다.

웹 기반 추천시스템에서 사회적 실재감이 추천 만족도에 미치는 영향

  • 최재원;이홍주
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2007년도 추계학술대회
    • /
    • pp.585-590
    • /
    • 2007
  • 기업과 소비자간 일대일 상호작용을 가능하게 하는 전자상거래의 기술적 발달을 통해 소비자에게 더 나은 웹 경험을 제공하기 위해 개인화 서비스를 제공하고 있다. 개인화 추천을 수행하기 위해서는 추천을 받을 사용자와 유사한 다른 사용자들의 선호도를 반영하는 협업 필터링 기법이 많이 활용되고 있으며, 많은 사이트들이 추천을 받은 사용자에게 유사한 사용자들을 보여주어 사회망 연결을 위한 기회를 제공하고 있다. 본 연구에서는 웹 기반 개인화 추천 시스템을 이용하여 사용자에게 효과적으로 제품을 추천하기 위해서, 사회적 실재감(Social Presence)이 추천시스템의 만족도에 미치는 영향에 관하여 연구하고자 한다. 또한, 사회적 실재감을 높이기 위한 방안으로 사회망(Social Network) 데이터의 제시를 통해 다양한 차원의 사회적 실재감과 추천시스템에 대한 만족도 및 신뢰간의 영향관계를 분석한다. 이를 위해 실험집단을 나누어 세 가지 차원의 사회적 실재감을 부여하고, 집단간의 추천 시스템에 대한 신뢰와 만족도간에 차이가 있는지를 분석하였다.

  • PDF

사용자 경향에 기반한 동적 추천 기법 : 영화 추천 시스템을 중심으로 (Dynamic Recommender on User Taste Tendency Model : Focusing on Movie Recommender System)

  • 이수정;이형동;김형주
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권2호
    • /
    • pp.153-163
    • /
    • 2004
  • 대부분의 추천 시스템에서는 개인의 선호 정보를 바탕으로 한 내용-기반 추천 기법과 다른 사람들로부터의 추천을 기반으로 한 사회적 추천 기법을 사용한다. 이들 두 기법은 각각 장단점을 갖고 있으며, 서로 경쟁 관계에 있다기보다 상호 보완적인 성격을 갖고 있다. 이에 두 기법의 적절한 조합이 전체 추천 시스템의 질을 결정하는 관건이 된다. 본 논문에서는 사용자 개인마다 각 기법에 대한 만족도와 의존도가 다름을 밝히고, 이러한 각 개인의 경향에 따라 여러 추천 기법의 결과를 개인별로 조합해 주는 기법을 제안하였다. 각 개인의 경향을 나타내는 척도로 충성도, 다양도, 전문가도 둥의 척도를 정의하여 사용하였으며, 이 원리에 의해 동작하는 조합 엔진의 결과는 최고 40%, 평균 23%의 coverage 개선 효과를 나타내었다.

개인화를 위한 추천시스템 알고리즘에 관한 연구

  • 강현철;한상태;신연주
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.307-311
    • /
    • 2003
  • 개인화된 추천시스템(recommendation system)은 자동화된 정보 필터링 기술을 적용하여 고객의 취향에 맞는 아이템(상품, 기사, 컨텐츠 등)을 추천하는 시스템이다. 이러한 추천시스템에서 가장 중요한 것은 고객의 특성을 정확히 파악하여 가장 적절한 아이템을 추천해 줄 수 있는 능력이라고 할 수 있다. 본 연구에서는 추천시스템을 위해 제안된 여러 알고리즘들을 소개하고 그 특징들을 비교하였으며, 연관성규칙발견과 군집분석을 이용한 추천시스템 알고리즘을 실제 자료에 적용하여 그 결과를 살펴보았다.

  • PDF

콘텐츠 유형에 따라 OTT 서비스의 개인화추천서비스가 관계강화 및 고객충성도에 미치는 영향 (Influence A Study on the Effects of Personalized Recommendation Service of OTT Service on the Relationship Strength and Customer Loyalty in Accordance with Type of Contents)

  • 김민주;김민균
    • 서비스연구
    • /
    • 제8권4호
    • /
    • pp.31-51
    • /
    • 2018
  • 본 기술의 발전과 인터넷 환경의 변화로 인터넷 기반의 동영상 제공 서비스인 OTT(Over-the-top) 서비스 시장이 빠르게 성장하고 이용자의 데이터를 바탕으로 맞춤형 정보 및 콘텐츠를 제공하는 개인화추천서비스에 대한 고객의 요가 커졌다. 본 연구는 OTT 서비스의 개인화추천서비스가 관계강화와 고객충성도에 미치는 영향을 분석하며, 나아가 콘텐츠 유형에 따라 개인화추천서비스가 가지는 의미의 차이를 확인하여 개인화추천서비스의 제공 방안을 제시하는 것을 목적으로 한다. 연구결과에 따르면 OTT 서비스의 개인화추천서비스는 관계강화를 매개로 고객충성도에 유의한 영향을 미치며, 고객이 주로 이용하는 콘텐츠의 형태 및 내용에 따라 개인화추천서비스가 관계강화와 고객충성도에 미치는 영향에 차이가 있다. 본 연구를 통해 개인화추천서비스는 고객과의 관계 형성 및 몰입을 유도하여 관계를 강화하는 도구로 활용될 수 있고 이는 고객충성도를 향상하며, 고객과의 소통이 활발한 콘텐츠일수록 개인화추천서비스의 제공이 충성도 향상에 크게 기여함을 알 수 있다.

베이지안 네트워크를 이용한 개인화 된 상품 추천 에이전트 (A Personalized Recommender Agent Using Bayesian Network)

  • 박진희;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.127-130
    • /
    • 2006
  • 소비자가 최적의 상품을 선택하기 위해서는 충분한 상품정보를 파악하여 상품정보를 일일이 조사해야하는 번거로움이 생긴다. 이러한 문제점을 해결하기 위하여 여러 가지 상품추천방법이 제안되고 있으나 상품추천 과정에서 고객의 기호 변화를 다루는 연구가 부족하다. 본 논문에서는 소비자의 기호 변화에 적응하는 개인화 된 상품 추천을 위하여 베이지안 네트워크를 모델링하여 상품 구매에 따르는 선호도를 분석하고, 추천된 상품에 대한 사용자의 행동으로 관심 정도를 측정하여 추천 리스트를 제공한다.

  • PDF

온톨로지를 이용한 관광정보 개인화 추천 시스템 설계 (Design of Personalized Recommendation System about Tourist Information Using Ontology)

  • 황명권;공현장;정관호;김판구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.685-687
    • /
    • 2005
  • 본 연구에서는 관광정보를 온톨로지로 구축하고, 개인화 추천 방법들 중 규칙 기반 필터링과 학습 에이전트를 적용하여 사용자에게 관광 정보를 정확하게 추천하기 위한 시스템을 설계하였다. 여기에서는 제주도 관광에 관한 정보의 일부를 개인화 추천 시스템에 적합하도록 각각의 도메인 온톨로지로 구축하였으며, 이 도메인 온톨로지를 이용하여 사용자가 선호하는 관광정보를 추천하고, 온톨로지의 클래스들 사이의 관계를 통해 추천된 관광정보와 관련있는 필요한 정보를 추천함으로써 사용자에게 더욱 정확하고 의미적인 정보를 제공할 수 있는 개인화 추천 시스템을 설계하였다.

  • PDF

개인 맞춤형 부동산 추천 웹 서비스 (A Research on Real Estate Recommendation Model Using Public Data)

  • 김도형;김민경;박예린;박유민;황호영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.93-96
    • /
    • 2021
  • 본 논문에서는 공공데이터를 이용한 개인 맞춤형 부동산 추천 방식을 제안한다. 이 추천 서비스는 기존의 가격 중심의 부동산 추천 방식이 아닌 개인이 원하는 요소 통해 부동산을 추천함으로써 사용자의 만족도를 높인다. 이 모델은 사용자가 실거주를 목적으로 하는 부동산 매물을 탐색하고자 할 때 거래 유형, 매물 유형, 가격 정보 뿐만 아니라 사용자가 자신의 주거지 근처에 형성되어 있길 원하는 편의 시설이나 기반시설, 치안 등의 환경 요소를 선택할 수 있도록 하고 선택된 요소들을 통합적으로 분석하여 주거지를 추천한다. 본 논문에서는 직접 구현한 서비스를 통해서 제안하는 새로운 맞춤형 부동산 추천 모델이 기존의 가격 중심의 부동산 추천 서비스보다 편의성 면에서 우수함을 보인다.

  • PDF

청취 순서 성향을 고려한 랜덤워크 음악 추천 기법과 실험 사례 (Experimental Study on Random Walk Music Recommendation Considering Users' Listening Preference Behaviors)

  • 최혜진;심준호
    • 한국전자거래학회지
    • /
    • 제22권3호
    • /
    • pp.75-85
    • /
    • 2017
  • 전자 상거래 산업에서 많이 사용되고 있는 개인화 추천은 많은 분야에서 효과를 입증하고 있다. 개인화 추천을 위해서는 개인 정보를 포함하여 아이템을 재 분류해야하는 추가 작업이 필요하다. 본 연구에서는 개인 정보를 사용하지 않고 아이템을 재분류 하지 않는 추천 기법에 대해 제안한다. 음악 추천 영역으로 제한하여 실험하였으며, 실제 청취 이력 데이터를 사용하였다. 실험 분석을 통해 적은 데이터로도 유의미한 추천을 이끌어 낼 가능성을 살피고, 상황별 추천을 위한 아이템 수 분석과 추가 기법을 제안한다.