• Title/Summary/Keyword: 개선된 RBF 네트워크

Search Result 27, Processing Time 0.032 seconds

Learning Performance Improvement of Fuzzy RBF Network (퍼지 RBF 네트워크의 학습 성능 개선)

  • Kim Jae-Yong;Kim Kwang-Baek
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.335-339
    • /
    • 2005
  • 본 논문에서는 퍼지 RBF 네트워크의 학습 성능을 개선하기 위하여 Delta-bar-Delta 알고리즘을 적용하여 학습률을 동적으로 조정하는 개선된 퍼지 RBF 네트워크를 제안한다. 제안된 학습 알고리즘은 일반화된 델타 학습 방법에 퍼지 C-Means 알고리즘을 결합한 방법으로, 중간층의 노드를 자가 생성하고 중간층과 출력충의 학습에는 일반화된 델타 학습 방법에 Delta-bar-Delta 알고리즘을 적용하여 학습률을 동적으로 조정하여 학습 성능을 개선한다. 제안된 RBF 네트워크의 학습 성능을 평가하기 위하여 컨테이너 영상에서 추출한 40개의 식별자를 학습 데이터로 적용한 결과, 기존의 ART2 기반 RBF 네트워크와 기존의 퍼지 RBF 네트워크 보다 학습 시간이 적게 소요되고, 학습의 수렴성이 개선된 것을 확인하였다.

  • PDF

Learning Performance Improvement of Fuzzy RBF Network (퍼지 RBF 네트워크의 학습 성능 개선)

  • Kim Kwang-Baek
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.3
    • /
    • pp.369-376
    • /
    • 2006
  • In this paper, we propose an improved fuzzy RBF network which dynamically adjusts the rate of learning by applying the Delta-bar-Delta algorithm in order to improve the learning performance of fuzzy RBF networks. The proposed learning algorithm, which combines the fuzzy C-Means algorithm with the generalized delta learning method, improves its learning performance by dynamically adjusting the rate of learning. The adjustment of the learning rate is achieved by self-generating middle-layered nodes and by applying the Delta-bar-Delta algorithm to the generalized delta learning method for the learning of middle and output layers. To evaluate the learning performance of the proposed RBF network, we used 40 identifiers extracted from a container image as the training data. Our experimental results show that the proposed method consumes less training time and improves the convergence of teaming, compared to the conventional ART2-based RBF network and fuzzy RBF network.

  • PDF

퍼지 추론과 개선된 퍼지 RBF 네트워크를 이용한 컨테이너 식별자 인식

  • 주이환;김재용;김광백
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.195-202
    • /
    • 2004
  • 일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 잡음으로 인하여 식별자의 형태가 변형될 수 있기 때문에 일정한 규칙으로 찾기는 힘들다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화 한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 추출된 개별 식별자의 인식은 개선된 퍼지 RBF 네트워크를 제안하여 적용한다. 제안된 퍼지 RBF 네트워크는 퍼지 C-Means 알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습에는 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출 방법이 개선되었고 기존의 퍼지 RBF 네트워크 보다 제안된 퍼지 RBF 네트워크가 컨테이너 식별자의 학습 및 인식에 우수함을 확인하였다.

  • PDF

Recognition of Resident Registration Card using Enhanced ART2-based RBF Network (개선된 ART2 기반 RBF 네트워크를 이용한 주민등록증 인식)

  • Cheong, Ho-Geun;Min, Ji-Hee;Kim, Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.202-206
    • /
    • 2005
  • 우리나라 주민등록증은 주소지, 주민등록 번호, 지문 등 개개인의 방대한 정보를 가진다. 그런데 현재의 플라스틱 주민등록증은 위?변조가 쉬워 사회적으로 많은 문제를 일으키고 있다. 이러한 문제점을 해결하기 위하여 주민등록증을 전산화 하여 주민등록증 위조여부를 판단하고 있다. 본 논문에서는 주민등록증 영상을 자동 인식할 수 있는 개선된 ART2기반 RBF 네트워크를 이용한 주민등록증 자동 인식 방법을 제안한다. 제안된 방법은 주민등록증 영상에서 위치 정보와 수직 및 수평 히스토그램 방법을 이용하여 주민등록번호와 발행일 영역을 추출한다. 그리고 추출된 주민등록번호와 발행일 영역에서 4 방향 윤곽선 추적 알고리즘으로 개별 문자를 추출한다. 추출된 개별 코드는 개선된 ART2 기반 RBF 네트워크를 제안하여 인식에 적용한다. 제안된 ART2 기반 RBF 네트워크는 ART2알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습은 일반화된 델타 학습에 모멘텀을 적용하여 학습 성능을 개선한다. 실제 주민등록증 영상을 이용하여 실험한 결과, 제안된 ART2기반 RBF 네트워크가 주민등록증 인식에 효율적인 것을 확인하였다.

  • PDF

Fuzzy RBF Network using FCM (FCM을 이용한 퍼지 RBF 네트워크)

  • 김재용;이상수;이준행;김광백
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.158-161
    • /
    • 2004
  • RBF 네트워크의 중간층은 클러스터링하는 층이다. 즉, 이 충의 목적은 주어진 자료 집합을 유사한 클러스터들(homogenous cluster)로 분류하는 것이다. 여기서 유사하다는 것은 입력 데이터들에 대한 특징 벡터 공간사이에서 한 클러스터내의 벡터들 간에 거리를 측정하여 정해진 반경 내에 존재하면 같은 클러스터로 분류하고 정해진 반경 내에 존재하지 않으면 다른 클러스터로 분류한다. 그러나 정해진 반경 내에서 클러스터링하는 것은 잘못된 클러스터를 선택하는 단점을 가지게 된다. 그러므로 중간층을 결정하는 .것은 RBF 네트워크의 전반적인 효율성에 큰 영향을 준다. 따라서 본 논문에서는 효율적으로 중간층을 결정하기 위한 방법으로 퍼지 C-Means 클러스터링 알고리즘을 적용한 퍼지 RBF 네트워크를 제안한다. 제안된 퍼지 RBF 네트워크의 학습은 크게 두 단계로 구분된다. 첫 번째 단계는 입력층과 중간층 사이에 퍼지 C-Means 알고리즘이 수행되고, 두 번째 단계는 중간층과 출력층 사이에 지도학습이 수행된다. 제안된 방법의 학습 성능을 평가하기 위하여 실제 주민등록증에서 추출한 숫자패턴에 적용한 결과, 기존의 RBF네트워크 보다 학습 성능이 개선된 것을 확인하였다.

  • PDF

Enhanced RBF Network by Using Auto-Turning Method of Learning Rate, Momentum and ART2 (학습률 및 모멘텀의 자동 조정 방법과 ART2를 이용한 개선된 RBF네트워크)

  • 주영호;김태경;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.91-94
    • /
    • 2003
  • 본 논문에서는 RBF 네트워크의 중간층과 출력층 사이의 연결강도를 효율적으로 조정하기 위해 퍼지 논리 시스템을 이용하여 학습률과 모멘텀을 동적으로 조정하는 개선된 RBF 네트워크를 제안한다. 입력층과 중간층 사이의 학습 구조로 ART2를 적용하고 중간층과 출력층 사이의 연결 강도 조정 방법으로는 제안된 학습률 자동 조정 방식을 적용한다. 제안된 방법의 학습 성능을 평가하기 위해 기존의 delta-bar-delta 알고리즘, 기존의 ART2 기반의 RBF 네트워크와 비교 분석한 결과, 제안된 방법이 학습 속도와 수렴성에서 개선된 것을 확인하였다.

  • PDF

Recognition of the Passport by Using Enhanced Fuzzy RBF Networks (개선된 퍼지 RBF 네트워크를 이용한 여권 인식)

  • 류재욱;김태경;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.147-152
    • /
    • 2003
  • 출입국 관리 시스템은 위조 여권 소지자, 수배자, 출입국 금지자 또는 불법 체류자 등의 출입국 부적격자를 검색하여 출입국자를 관리하고 있다. 이러한 출입국 관리 시스템은 위조 여권 판별이 중요하므로 위조 여권을 판별하는 전 단계로 퍼지 RBF 네트워크 제안하여 여권을 인식하는 방법을 제안한다. 제안된 여권 인식 방법은 소벨 연산자와 수평 스미어링, 윤곽선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출한다. 추출된 문자열 영역을 사다리꼴 타입의 소속 함수를 이용한 퍼지 이진화 방법을 제안하여 이진화하고 이진화된 문자열 영역에 대해서 개별 코드의 문자들을 복원하기 위하여 CDM 마스크를 적용한 후에 수직 스미어링을 적용하여 개별 코드의 문자를 추출한다. 개별 코드의 인식은 퍼지 ART 알고리즘을 개선하여 RBF 네트워크의 중간층으로 적용하는 퍼지 RBF 네트워크를 제안하여 적용한다. 제안된 방법의 성능을 확인하기 위해서 실제 여권영상을 대상으로 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능이 있음을 확인하였다.

  • PDF

FCM-based RBF Network Using Fuzzy Control Method (퍼지 제어 기법을 이용한 FCM 기반 RBF 네트워크)

  • Kim, Tae-Hyung;Park, Choong-Shik;Kim, Kwang-Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2008.06a
    • /
    • pp.149-154
    • /
    • 2008
  • FCM 기반 RBF 네트워크는 서로 다른 학습 구조가 결합된 혼합형 모델로서, 입력층과 중간층의 학습 구조는 FCM 알고리즘을 적용하고, 중간층과 출력층 사이의 학습 구조는 Max_Min 신경망을 적용한다. 입력층과 중간층의 학습시 입력벡터와 중간층의 노드중에서 중심과 입력벡터간의 가장 가까운 노드를 승자 노드로 선택하여 출력층으로 전달한다. 그리고 중간층과 출력층 사이의 학습 구조는 Max_Min 신경망을 적용하여 중간층의 승자 뉴런이 출력층의 입력벡터로 적용한다. 하지만 많은 패턴이 입력벡터로 제시될 경우 학습 성능이 저하되는 단점이 있다. 따라서 본 논문에서는 중간층과 출력층의 학습 구조인 Max_Min 알고리즘의 학습 성능을 개선시키기 위해 퍼지 제어시스템을 이용하여 학습률을 동적으로 조정하는 퍼지 제어 기법을 이용한 FCM 기반 RBF 네트워크를 제안한다. 제안된 방법의 학습 성능을 평가하기 위하여 컨테이너 영상에서 추출한 숫자, 영문 식별자를 학습 데이터로 적용한 결과, 기존의 ART2 기반 RBF 네트워크보다 학습 시간이 적게 소요되고, 학습의 수렴성이 개선된 것을 확인하였다.

  • PDF

Container Recognition System using Fuzzy RBF Network (퍼지 RBF 네트워크를 이용한 컨테이너 인식 시스템)

  • Kim, Jae-Yong;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.497-503
    • /
    • 2005
  • 본 논문에서는 퍼지 RBF 네트워크를 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 잡음으로 인하여 식별자의 형태가 변형될 수 있기 때문에 일정한 규칙으로 찾기는 힘들다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지 추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 4방향 윤광선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 개별 식별자 인식을 위해 퍼지 C-Means 알고리즘을 이용한 퍼지 RBF 네트워크를 제안하여 개별 식별자에 적용한다. 제안된 퍼지 RBF 네트워크는 퍼지 C-Means 알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습에는 일반화된 델타 학습 방법과Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출방법이 개선되었다. 그리고 기존의 ART2 기반 RBF 네트워크보다 제안된 퍼지 RBF 네트워크가 컨테이너 식별자의 학습 및 인식에 있어서 우수함을 확인하였다.

  • PDF

ART2 기반 RBF 네트워크와 얼굴 인증을 이용한 주민등록증 인식

  • ;Lee, Jae-Eon;Kim, Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.526-535
    • /
    • 2005
  • 우리나라의 주민등록증은 주소지, 주민등록 변호, 얼굴사진, 지문 등 개개인의 방대한 정보를 가진다. 현재의 플라스틱 주민등록증은 위조 및 변조가 쉽고 날로 전문화 되어가고 있다. 따라서 육안으로 위조 및 변조 사실을 쉽게 확인하기가 어려워 사회적으로 많은 문제를 일으키고 있다. 이에 본 논문에서는 주민등록증 영상을 자동 인식할 수 있는 개선된 ART2 기반 RBF 네트워크와 얼굴인증을 이용한 주민등록증 자동 인식 방법을 제안한다. 제안된 방법은 주민등록증 영상에서 주민등록번호와 발행일을 추출하기 위하여 영상을 소벨마스크와 미디언 필터링을 적용한 후에 수평 스미어링을 적용하여 주민등록번호와 발행일 영역을 검출한다. 그리고 4 방향 윤곽선 추적 알고리즘으로 개별 문자를 추출하기 위한 전 단계로 주민등록증 영상에 대해 고주파 필터링을 적용하여 주민등록증 영상 전체를 이진화 한다. 이진화된 주민등록영상에서 COM 마스크를 적용하여 주민등록번호와 발행일 코드를 복원하고 검출된 각 영역에 대해 4 방향 윤곽선 추적 알고리즘으로 개별 문자를 추출한다. 추출된 개별 문자는 개선된 ART2 기반 RBF 네트워크를 제안하여 인식에 적용한다. 제안된 ART2 기반 RBF 네트워크는 학습 성능을 개선하기 위하여 중간충과 출력층의 학습에 퍼지 제어 기법을 적용하여 학습률을 동적으로 조정한다. 얼굴인증은 템플릿 매칭 알고리즘을 이용하여 얼굴 템플릿 데이터베이스를 구축하고 주민등록증애서 추출된 얼굴영역과의 유사도를 측정하여 주민등록증 얼굴 영역의 위조여부를 판별한다.

  • PDF