매년 도로와 주차공간의 확장보다 차량의 수가 빠르게 증가하여 그에 따라 불법 주차 관리의 어려움이 증가하고 있다. 이러한 문제점을 해결하기 위해 지능형 주차 관리 시스템이 필요하게 되었다. 본 논문에서는 획득된 차량 영상에서 수직 에지의 특징을 이용하여 번호판 영역과 개별 코드를 추출하고, 추출된 개별 코드를 퍼지 신경망 알고리즘을 제안하여 학습 및 인식한다. 본 논문에서는 차량 번호판 영역을 검출하기 위해 프리윗 마스크를 적용하여 수직 에지를 찾고, 차량 번호판의 정보를 이용하여 잡음을 제거한 후에 차량 번호판 영역을 추출한다. 추출된 차량 번호판 영역은 반복 이진화방법을 적용하여 이진화하고, 이진화된 차량 번호판 영역에 대해서 수직 분포도와 수평 분포도를 이용하여 번호판의 개별 코드를 추출한다 추출된 개별 코드는 제안된 퍼지 신경망 알고리즘을 적용하여 인식한다. 제안된 퍼지 신경망은 입력층과 중간층간의 학습 구조로는 FCM 알고리즘을 적용하고 중간층과 출력층간의 학습 구조는 Max_Min 신경망을 적용한다. 제안된 방법의 추출 및 인식 성능을 평가하기 위하여 실제 차량 영상 150장을 대상으로 실험한 결과, 기존의 차량 번호판 인식 방법보다 효율적이고 인식 성능이 개선된 것을 확인하였다.
본 연구에서는 퍼지 RBFNNs과 증분형 주성분 분석법으로 실현된 숫자인식 시스템의 설계를 소개한다. 주성분 분석법은 차원축소를 위해 사용되는 알고리즘으로 학습데이터의 차원 수가 고차원이거나 데이터의 양이 많을 때 특징 추출을 위한 많은 계산 시간을 필요로 한다. 따라서 고차원 데이터의 효율적인 차원축소와 점진적인 학습을 위해 증분형 주성분분석법을 적용하는 방법을 제안한다. 방사형 기저함수 신경회로망의 구조는 조건부, 결론부, 추론부의 3가지 기능적 모듈로서 구분이 가능하다. 조건부에서는 FCM 클러스터링 알고리즘의 도움으로 실현된 퍼지 클러스터링의 사용으로 입력 공간을 분할한다. 또한 가우시안 함수 대신 FCM(Fuzzy C-Means)클러스터링 알고리즘의 멤버쉽 값을 사용함으로써 입력 데이터의 특성을 좀 더 잘 반영할 수 있도록 개선하였으며, 결론부에서 연결가중치는 상수항에서 일차식과 이차식, 그리고 변형된 이차식과 같은 다항식의 형태로 확장하여 사용한다. 실험 결과는 공인 숫자 데이터인 MNIST 필기체 숫자 데이터를 사용하여 제안된 숫자 인식 시스템의 효율성을 다른 연구와의 비교를 통해 입증한다.
본 논문은 화소 단위의 정보가 아닌 분할된 영역들의 정보를 기반으로 유전자 알고리즘을 이용한 텍스트 후보영역 검출방안을 제안한다. 먼저, 영상분할을 수행하기 위해 색상별 화소분류와 비동질적인 군집의 감소를 위한 영역 단위의 재분류 알고리즘을 수행한다. 색상별 화소분류에 이용되는 EWFCM(Entropy-based Weighted Fuzzy C-Means) 알고리즘은 공간정보를 추가한 개선된 FCM 알고리즘으로써, 잡음에 강건한 특징을 가진다. EWFCM 알고리즘에 의해 분류된 화소들의 군집정보를 기반으로 수행되는 영역 단위의 재분류는 화소나 군집 단위의 재분류에 비해 효과적으로 영상에 존재하는 비동질적인 군집들을 감소시킬 수 있다. 그리고 텍스트 후보영역 검출은 분할된 영역들로부터 추출한 방향성 에지 성분에 대한 분산값 및 에너지, 크기, 개수 등의 정보를 기반으로 유전자알고리즘에 의해 수행된다. 이는 화소 단위의 정보를 이용한 방법보다 더 명확한 텍스트 영역정보를 획득할 수 있으며, 향후 자동문자인식에서 좀 더 손쉽게 이용될 수 있다. 실험 결과 제안한 분할방법은 기존 방법이나 화소나 군집 기반의 재분류보다 좋은 결과를 보였으며, 텍스트 후보영역 검출에서도 화소 단위의 정보를 이용한 기존 방법보다 더 좋은 결과를 보여 제안방법의 유효성을 확인하였다.
본 논문에서는 여러 분야에서 널리 응용되고 있는 적응 뉴로-퍼지 시스템(ANFIS)에서의 효과적인 퍼지 규칙 생성방법을 제안한다. ANFIS의 성능 개선을 위해 구조동정을 수행함에 있어서 전제부 파라미터는 EM(Expectation-Maximization) 알고리즘을 적용하였으며, 파라미터학습은 Jang에 의한 하이브리드 방법을 적용한다. 여기서 초기의 중심과 분산을 구하기 위해 FCM(Fuzzy c-means) 클러스터링 기법을 사용하였다. 이렇게 함으로서 적은 규칙 수를 가지면서도 효율적인 퍼지 규칙을 얻을 수 있도록 하였다. 이들 방법의 유용함을 보이고자 Box-Jenkins의 가스로 데이터에 적용하여 제안된 방법이 이전의 연구보다 좋은 결과를 보임을 보이고자 한다
본 논문에서는 비선형 블라인드 채널등화기의 구현을 위하여 가우시안 가중치(gaussian weights)를 이용한 개선된 퍼지 클러스터(Modified Fuzzy C-Means with Gaussian Weights: MFCM_GW) 알고리즘을 제안한다. 제안된 알고리즘은 기존 FCM 알고리즘의 유클리디언 거리(Euclidean distance) 값 대신 Bayesian Likelihood 목적 함수(fitness function)와 가우시안 가중치가 적용된 멤버십 매트릭스(partition matrix)를 이용하여, 비선형 채널의 출력으로 수신된 데이터들로부터 최적의 채널 출력 상태 값(optimal channel output states)들을 직접 추정한다. 이렇게 추정된 채널 출력 상태 값들로 비선형 채널의 이상적 채널 상태(desired channel states) 백터들을 구성하고, 이를 Radial Basis Function(RBF) 등화기의 중심(center)으로 활용함으로써 송신된 데이터 심볼을 찾아낸다. 실험에서는 무작위 이진 신호에 가우시안 잡음이 추가된 데이터를 사용하여 기존의 Simplex Genetic Algorithm(GA), 하이브리드 형태의 GASA(GA merged with simulated annealing(SA)), 그리고 과거에 발표되었던 MFCM 등과 그 성능을 비교 분석하였으며, 가우시안 가중치가 적용된 MFCM_GW를 이용한 채널등화기가 상대적으로 정확도와 속도 면에서 우수함을 보였다.
본 논문에서는 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 글자의 색이 검정색 또는 흰색으로 이루어져 있는 특정이 있다. 이러한 특성을 고려하여 원 컨테이너 영상에 대해 검은색과 흰색을 제외하고는 모든 부분을 잡음으로 처리하기 위해 퍼지 추론 방법을 이용하여 식별자 영역과 바탕영역을 구별한다. 식별자 영역으로 구분 된 영역은 그대로 두고, 바탕 영역으로 구분된 영역 은 전체 영상의 평균 픽셀 값으로 대체시킨다. 그리고 Sobel 마스크를 이용하여 에지를 검출하고, 추출된 에지를 이용하여 수직 블록과 수평 블록을 검출 하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화 된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 4 방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출 한다. 개별 식별자 인식을 위해 자가 생성 지도 학습 알고리즘을 제안하여 개별 식별자 인식에 적용한다. 제안된 자가 생성 지도 학습 알고리즘은 입력층과 은닉층 사이의 구조를 ART-l을 개선하여 적용하고 은닉층과 출력층 사이에는 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 및 인식 성능을 개선한다. 실제 80 개의 컨테이너 영상을 대상으로 실험한 결과, 제안된 식별자 추출 방법이 이전의 개별 추출 방법보다 추출률이 개선되었고 FCM 기반 자가 생성 지도 학습 알고리즘보다 제안된 자가 생성 지도 학습 알고리즘이 컨테이너 식별자의 학습 및 인식에 있어서 개선된 것을 확인하였다.색 문제를 해결하고자 하는 것이 연구의 목적이다. 정보추출은 사용자의 관심사에 적합한 문서들로부터 어떤 구체적인 사실이나 관계를 정확히 추출하는 작업을 가리킨다.앞으로 e-메일, 매신저, 전자결재, 지식관리시스템, 인터넷 방송 시스템의 기반 구조 역할을 할 수 있다. 현재 오픈웨어에 적용하기 위한 P2P 기반의 지능형 BPM(Business Process Management)에 관한 연구와 X인터넷 기술을 이용한 RIA (Rich Internet Application) 기반 웹인터페이스 연구를 진행하고 있다.태도와 유아의 창의성간에는 상관이 없는 것으로 나타났고, 일반 유아의 아버지 양육태도와 유아의 창의성간의 상관에서는 아버지 양육태도의 성취-비성취 요인에서와 창의성제목의 추상성요인에서 상관이 있는 것으로 나타났다. 따라서 창의성이 높은 아동의 아버지의 양육태도는 일반 유아의 아버지와 보다 더 애정적이며 자율성이 높지만 창의성이 높은 아동의 집단내에서 창의성에 특별한 영향을 더 미치는 아버지의 양육방식은 발견되지 않았다. 반면 일반 유아의 경우 아버지의 성취지향성이 낮을 때 자녀의 창의성을 향상시킬 수 있는 것으로 나타났다. 이상에서 자녀의 창의성을 향상시키는 중요한 양육차원은 애정성이나 비성취지향성으로 나타나고 있어 정서적인 측면의 지원인 것으로 밝혀졌다.징에서 나타나는 AD-SR맥락의 반성적 탐구가 자주 나타났다. 반성적 탐구 척도 두 그룹을 비교 했을 때 CON 상호작용의 특징이 낮게 나타나는 N그룹이 양적으로 그리고 내용적으로 더 의미 있는 반성적 탐구를 했다용을 지원하는 홈페이지를 만들어 자료
본 연구에서는 퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기(Polynomial Network Pattern Classifier; PNC)를 설계하고 Particle Swarm Optimization 알고리즘을 이용하여 PNC 파라미터, 즉, 학습률, 모멘텀 계수, FCM 클러스터링의 퍼지화 계수(fuzzification Coefficient)를 최적화한다. 제안된 PNC 구조는 FCM 클러스터링에 기반한 분할 함수를 활성 함수로 사용하며, 다항식 함수로 구성된 연결가중치를 사용함으로서 기존 신경회로망 분류기의 선형적인 특성을 개선한다. PNC 구조는 언어적 해석관점에서 "If-then"의 퍼지 규칙으로 표현되며 퍼지 추론 메커니즘에 의해 구동된다. 즉 조건부, 결론부, 추론부 세 가지의 기능적 모듈로 나뉘어 네트워크 구조가 형성된다. 조건부는 FCM 클러스터링을 사용하여 입력 공간을 분할하고, 결론부는 분할된 로컬 영역을 다항식 함수로 표현한다. 마지막으로, 네트워크의 최종출력은 추론부의 퍼지추론에 의한다. 제안된 PNC는 다항식 기반 구조의 퍼지 추론 특성으로 인해 출력 공간상에 비선형 판별 함수(nonlinear discernment function)가 생성되어 분류기로서의 성능을 높인다.
클러스터링이란 한 군집에 포함된 데이터들 간의 유사한 성질을 갖도록 데이터들을 묶는 것으로 패턴인식, 영상처리 등의 공학 분야에 널리 적용되고 있을 뿐만 아니라, 최근 많은 관심의 대상이 되고 있는 데이터 마이닝의 주요 기술로서 활발히 응용되고 있다. 클러스터링에 있어서 K-means나 FCM(Fuzzy C-means)와 같은 기존의 알고리즘들은 지역적 최적해에 수렴하는 것과 사전에 클러스터 개수를 미리 결정해야 하는 문제점을 개선하였으며, 클러스터링의 특성을 분산도와 분리도로 정의하였다. 분산도는 임의의 클러스터의 중심으로부터 포함된 데이터들이 어느 정도 흩어져 있는지를 나타내는 척도인 반면, 분리도는 임의의 데이터와 모든 클러스터 중심간의 거리의 비율로서 얻어지는 소속정도를 고려하여 클러스터 중심간의 거리를 나타내는 척도이다. 이 두 척도를 이용하여 자동으로 적절한 클러스터 개수를 결정하게 하였다. 또한 진화알고리즘의 문제점인 탐색공간의 확대에 따른 수행시간의 증가는 휴리스틱 연산을 적용함으로써 크게 개선하였다. 제안한 알고리즘의 성능 및 타당성을 보이기 위해 이차원과 다차원 실험데이타를 사용하여 실험한 결과 제안한 알고리즘의 성능이 우수함을 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.