• 제목/요약/키워드: 개선된 FCM 알고리즘

검색결과 48건 처리시간 0.023초

퍼지 신경망을 이용한 자동차 번호판 인식 시스템 (Recognition System of Car License Plate using Fuzzy Neural Networks)

  • 김재용;이동민;김영주;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.352-357
    • /
    • 2006
  • 매년 도로와 주차공간의 확장보다 차량의 수가 빠르게 증가하여 그에 따라 불법 주차 관리의 어려움이 증가하고 있다. 이러한 문제점을 해결하기 위해 지능형 주차 관리 시스템이 필요하게 되었다. 본 논문에서는 획득된 차량 영상에서 수직 에지의 특징을 이용하여 번호판 영역과 개별 코드를 추출하고, 추출된 개별 코드를 퍼지 신경망 알고리즘을 제안하여 학습 및 인식한다. 본 논문에서는 차량 번호판 영역을 검출하기 위해 프리윗 마스크를 적용하여 수직 에지를 찾고, 차량 번호판의 정보를 이용하여 잡음을 제거한 후에 차량 번호판 영역을 추출한다. 추출된 차량 번호판 영역은 반복 이진화방법을 적용하여 이진화하고, 이진화된 차량 번호판 영역에 대해서 수직 분포도와 수평 분포도를 이용하여 번호판의 개별 코드를 추출한다 추출된 개별 코드는 제안된 퍼지 신경망 알고리즘을 적용하여 인식한다. 제안된 퍼지 신경망은 입력층과 중간층간의 학습 구조로는 FCM 알고리즘을 적용하고 중간층과 출력층간의 학습 구조는 Max_Min 신경망을 적용한다. 제안된 방법의 추출 및 인식 성능을 평가하기 위하여 실제 차량 영상 150장을 대상으로 실험한 결과, 기존의 차량 번호판 인식 방법보다 효율적이고 인식 성능이 개선된 것을 확인하였다.

  • PDF

퍼지 RBFNNs와 증분형 주성분 분석법으로 실현된 숫자 인식 시스템의 설계 (Design of Digit Recognition System Realized with the Aid of Fuzzy RBFNNs and Incremental-PCA)

  • 김봉연;오성권;김진율
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.56-63
    • /
    • 2016
  • 본 연구에서는 퍼지 RBFNNs과 증분형 주성분 분석법으로 실현된 숫자인식 시스템의 설계를 소개한다. 주성분 분석법은 차원축소를 위해 사용되는 알고리즘으로 학습데이터의 차원 수가 고차원이거나 데이터의 양이 많을 때 특징 추출을 위한 많은 계산 시간을 필요로 한다. 따라서 고차원 데이터의 효율적인 차원축소와 점진적인 학습을 위해 증분형 주성분분석법을 적용하는 방법을 제안한다. 방사형 기저함수 신경회로망의 구조는 조건부, 결론부, 추론부의 3가지 기능적 모듈로서 구분이 가능하다. 조건부에서는 FCM 클러스터링 알고리즘의 도움으로 실현된 퍼지 클러스터링의 사용으로 입력 공간을 분할한다. 또한 가우시안 함수 대신 FCM(Fuzzy C-Means)클러스터링 알고리즘의 멤버쉽 값을 사용함으로써 입력 데이터의 특성을 좀 더 잘 반영할 수 있도록 개선하였으며, 결론부에서 연결가중치는 상수항에서 일차식과 이차식, 그리고 변형된 이차식과 같은 다항식의 형태로 확장하여 사용한다. 실험 결과는 공인 숫자 데이터인 MNIST 필기체 숫자 데이터를 사용하여 제안된 숫자 인식 시스템의 효율성을 다른 연구와의 비교를 통해 입증한다.

영역정보기반의 유전자알고리즘을 이용한 텍스트 후보영역 검출 (Detection of Text Candidate Regions using Region Information-based Genetic Algorithm)

  • 오준택;김욱현
    • 대한전자공학회논문지SP
    • /
    • 제45권6호
    • /
    • pp.70-77
    • /
    • 2008
  • 본 논문은 화소 단위의 정보가 아닌 분할된 영역들의 정보를 기반으로 유전자 알고리즘을 이용한 텍스트 후보영역 검출방안을 제안한다. 먼저, 영상분할을 수행하기 위해 색상별 화소분류와 비동질적인 군집의 감소를 위한 영역 단위의 재분류 알고리즘을 수행한다. 색상별 화소분류에 이용되는 EWFCM(Entropy-based Weighted Fuzzy C-Means) 알고리즘은 공간정보를 추가한 개선된 FCM 알고리즘으로써, 잡음에 강건한 특징을 가진다. EWFCM 알고리즘에 의해 분류된 화소들의 군집정보를 기반으로 수행되는 영역 단위의 재분류는 화소나 군집 단위의 재분류에 비해 효과적으로 영상에 존재하는 비동질적인 군집들을 감소시킬 수 있다. 그리고 텍스트 후보영역 검출은 분할된 영역들로부터 추출한 방향성 에지 성분에 대한 분산값 및 에너지, 크기, 개수 등의 정보를 기반으로 유전자알고리즘에 의해 수행된다. 이는 화소 단위의 정보를 이용한 방법보다 더 명확한 텍스트 영역정보를 획득할 수 있으며, 향후 자동문자인식에서 좀 더 손쉽게 이용될 수 있다. 실험 결과 제안한 분할방법은 기존 방법이나 화소나 군집 기반의 재분류보다 좋은 결과를 보였으며, 텍스트 후보영역 검출에서도 화소 단위의 정보를 이용한 기존 방법보다 더 좋은 결과를 보여 제안방법의 유효성을 확인하였다.

EM 알고리즘에 의한 뉴로-퍼지 시스템의 퍼지 규칙 생성 (Fuzzy rule Extraction of Neuro-Fuzzy System using EM algorithm)

  • 김승석;곽근창;유정웅;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 춘계학술대회 및 임시총회
    • /
    • pp.170-173
    • /
    • 2002
  • 본 논문에서는 여러 분야에서 널리 응용되고 있는 적응 뉴로-퍼지 시스템(ANFIS)에서의 효과적인 퍼지 규칙 생성방법을 제안한다. ANFIS의 성능 개선을 위해 구조동정을 수행함에 있어서 전제부 파라미터는 EM(Expectation-Maximization) 알고리즘을 적용하였으며, 파라미터학습은 Jang에 의한 하이브리드 방법을 적용한다. 여기서 초기의 중심과 분산을 구하기 위해 FCM(Fuzzy c-means) 클러스터링 기법을 사용하였다. 이렇게 함으로서 적은 규칙 수를 가지면서도 효율적인 퍼지 규칙을 얻을 수 있도록 하였다. 이들 방법의 유용함을 보이고자 Box-Jenkins의 가스로 데이터에 적용하여 제안된 방법이 이전의 연구보다 좋은 결과를 보임을 보이고자 한다

  • PDF

MFCM의 성능개선을 통한 블라인드 비선형 채널 등화 (Blind Nonlinear Channel Equalization by Performance Improvement on MFCM)

  • 박성대;우영운;한수환
    • 한국정보통신학회논문지
    • /
    • 제11권11호
    • /
    • pp.2158-2165
    • /
    • 2007
  • 본 논문에서는 비선형 블라인드 채널등화기의 구현을 위하여 가우시안 가중치(gaussian weights)를 이용한 개선된 퍼지 클러스터(Modified Fuzzy C-Means with Gaussian Weights: MFCM_GW) 알고리즘을 제안한다. 제안된 알고리즘은 기존 FCM 알고리즘의 유클리디언 거리(Euclidean distance) 값 대신 Bayesian Likelihood 목적 함수(fitness function)와 가우시안 가중치가 적용된 멤버십 매트릭스(partition matrix)를 이용하여, 비선형 채널의 출력으로 수신된 데이터들로부터 최적의 채널 출력 상태 값(optimal channel output states)들을 직접 추정한다. 이렇게 추정된 채널 출력 상태 값들로 비선형 채널의 이상적 채널 상태(desired channel states) 백터들을 구성하고, 이를 Radial Basis Function(RBF) 등화기의 중심(center)으로 활용함으로써 송신된 데이터 심볼을 찾아낸다. 실험에서는 무작위 이진 신호에 가우시안 잡음이 추가된 데이터를 사용하여 기존의 Simplex Genetic Algorithm(GA), 하이브리드 형태의 GASA(GA merged with simulated annealing(SA)), 그리고 과거에 발표되었던 MFCM 등과 그 성능을 비교 분석하였으며, 가우시안 가중치가 적용된 MFCM_GW를 이용한 채널등화기가 상대적으로 정확도와 속도 면에서 우수함을 보였다.

자가 생성 지도 학습 알고리즘을 이용한 컨테이너 식별자 인식

  • 김재용;박충식;김광백
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 공동추계학술대회
    • /
    • pp.500-506
    • /
    • 2005
  • 본 논문에서는 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 글자의 색이 검정색 또는 흰색으로 이루어져 있는 특정이 있다. 이러한 특성을 고려하여 원 컨테이너 영상에 대해 검은색과 흰색을 제외하고는 모든 부분을 잡음으로 처리하기 위해 퍼지 추론 방법을 이용하여 식별자 영역과 바탕영역을 구별한다. 식별자 영역으로 구분 된 영역은 그대로 두고, 바탕 영역으로 구분된 영역 은 전체 영상의 평균 픽셀 값으로 대체시킨다. 그리고 Sobel 마스크를 이용하여 에지를 검출하고, 추출된 에지를 이용하여 수직 블록과 수평 블록을 검출 하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화 된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 4 방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출 한다. 개별 식별자 인식을 위해 자가 생성 지도 학습 알고리즘을 제안하여 개별 식별자 인식에 적용한다. 제안된 자가 생성 지도 학습 알고리즘은 입력층과 은닉층 사이의 구조를 ART-l을 개선하여 적용하고 은닉층과 출력층 사이에는 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 및 인식 성능을 개선한다. 실제 80 개의 컨테이너 영상을 대상으로 실험한 결과, 제안된 식별자 추출 방법이 이전의 개별 추출 방법보다 추출률이 개선되었고 FCM 기반 자가 생성 지도 학습 알고리즘보다 제안된 자가 생성 지도 학습 알고리즘이 컨테이너 식별자의 학습 및 인식에 있어서 개선된 것을 확인하였다.색 문제를 해결하고자 하는 것이 연구의 목적이다. 정보추출은 사용자의 관심사에 적합한 문서들로부터 어떤 구체적인 사실이나 관계를 정확히 추출하는 작업을 가리킨다.앞으로 e-메일, 매신저, 전자결재, 지식관리시스템, 인터넷 방송 시스템의 기반 구조 역할을 할 수 있다. 현재 오픈웨어에 적용하기 위한 P2P 기반의 지능형 BPM(Business Process Management)에 관한 연구와 X인터넷 기술을 이용한 RIA (Rich Internet Application) 기반 웹인터페이스 연구를 진행하고 있다.태도와 유아의 창의성간에는 상관이 없는 것으로 나타났고, 일반 유아의 아버지 양육태도와 유아의 창의성간의 상관에서는 아버지 양육태도의 성취-비성취 요인에서와 창의성제목의 추상성요인에서 상관이 있는 것으로 나타났다. 따라서 창의성이 높은 아동의 아버지의 양육태도는 일반 유아의 아버지와 보다 더 애정적이며 자율성이 높지만 창의성이 높은 아동의 집단내에서 창의성에 특별한 영향을 더 미치는 아버지의 양육방식은 발견되지 않았다. 반면 일반 유아의 경우 아버지의 성취지향성이 낮을 때 자녀의 창의성을 향상시킬 수 있는 것으로 나타났다. 이상에서 자녀의 창의성을 향상시키는 중요한 양육차원은 애정성이나 비성취지향성으로 나타나고 있어 정서적인 측면의 지원인 것으로 밝혀졌다.징에서 나타나는 AD-SR맥락의 반성적 탐구가 자주 나타났다. 반성적 탐구 척도 두 그룹을 비교 했을 때 CON 상호작용의 특징이 낮게 나타나는 N그룹이 양적으로 그리고 내용적으로 더 의미 있는 반성적 탐구를 했다용을 지원하는 홈페이지를 만들어 자료

  • PDF

퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기의 설계와 이의 최적화 (The Design of Polynomial Network Pattern Classifier based on Fuzzy Inference Mechanism and Its Optimization)

  • 김길성;박병준;오성권
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.970-976
    • /
    • 2007
  • 본 연구에서는 퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기(Polynomial Network Pattern Classifier; PNC)를 설계하고 Particle Swarm Optimization 알고리즘을 이용하여 PNC 파라미터, 즉, 학습률, 모멘텀 계수, FCM 클러스터링의 퍼지화 계수(fuzzification Coefficient)를 최적화한다. 제안된 PNC 구조는 FCM 클러스터링에 기반한 분할 함수를 활성 함수로 사용하며, 다항식 함수로 구성된 연결가중치를 사용함으로서 기존 신경회로망 분류기의 선형적인 특성을 개선한다. PNC 구조는 언어적 해석관점에서 "If-then"의 퍼지 규칙으로 표현되며 퍼지 추론 메커니즘에 의해 구동된다. 즉 조건부, 결론부, 추론부 세 가지의 기능적 모듈로 나뉘어 네트워크 구조가 형성된다. 조건부는 FCM 클러스터링을 사용하여 입력 공간을 분할하고, 결론부는 분할된 로컬 영역을 다항식 함수로 표현한다. 마지막으로, 네트워크의 최종출력은 추론부의 퍼지추론에 의한다. 제안된 PNC는 다항식 기반 구조의 퍼지 추론 특성으로 인해 출력 공간상에 비선형 판별 함수(nonlinear discernment function)가 생성되어 분류기로서의 성능을 높인다.

휴리스틱 진화에 기반한 효율적 클러스터링 알고리즘 (An Efficient Clustering Algorithm based on Heuristic Evolution)

  • 류정우;강명구;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권1_2호
    • /
    • pp.80-90
    • /
    • 2002
  • 클러스터링이란 한 군집에 포함된 데이터들 간의 유사한 성질을 갖도록 데이터들을 묶는 것으로 패턴인식, 영상처리 등의 공학 분야에 널리 적용되고 있을 뿐만 아니라, 최근 많은 관심의 대상이 되고 있는 데이터 마이닝의 주요 기술로서 활발히 응용되고 있다. 클러스터링에 있어서 K-means나 FCM(Fuzzy C-means)와 같은 기존의 알고리즘들은 지역적 최적해에 수렴하는 것과 사전에 클러스터 개수를 미리 결정해야 하는 문제점을 개선하였으며, 클러스터링의 특성을 분산도와 분리도로 정의하였다. 분산도는 임의의 클러스터의 중심으로부터 포함된 데이터들이 어느 정도 흩어져 있는지를 나타내는 척도인 반면, 분리도는 임의의 데이터와 모든 클러스터 중심간의 거리의 비율로서 얻어지는 소속정도를 고려하여 클러스터 중심간의 거리를 나타내는 척도이다. 이 두 척도를 이용하여 자동으로 적절한 클러스터 개수를 결정하게 하였다. 또한 진화알고리즘의 문제점인 탐색공간의 확대에 따른 수행시간의 증가는 휴리스틱 연산을 적용함으로써 크게 개선하였다. 제안한 알고리즘의 성능 및 타당성을 보이기 위해 이차원과 다차원 실험데이타를 사용하여 실험한 결과 제안한 알고리즘의 성능이 우수함을 나타내었다.