• Title/Summary/Keyword: 개선된 FCM 알고리즘

Search Result 48, Processing Time 0.037 seconds

Design of Robust Face Recognition System with Illumination Variation Realized with the Aid of CT Preprocessing Method (CT 전처리 기법을 이용하여 조명변화에 강인한 얼굴인식 시스템 설계)

  • Jin, Yong-Tak;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.91-96
    • /
    • 2015
  • In this study, we introduce robust face recognition system with illumination variation realized with the aid of CT preprocessing method. As preprocessing algorithm, Census Transform(CT) algorithm is used to extract locally facial features under unilluminated condition. The dimension reduction of the preprocessed data is carried out by using $(2D)^2$PCA which is the extended type of PCA. Feature data extracted through dimension algorithm is used as the inputs of proposed radial basis function neural networks. The hidden layer of the radial basis function neural networks(RBFNN) is built up by fuzzy c-means(FCM) clustering algorithm and the connection weights of the networks are described as the coefficients of linear polynomial function. The essential design parameters (including the number of inputs and fuzzification coefficient) of the proposed networks are optimized by means of artificial bee colony(ABC) algorithm. This study is experimented with both Yale Face database B and CMU PIE database to evaluate the performance of the proposed system.

PCA 알고리즘과 개선된 퍼지 신경망을 이용한 여권 인식 및 얼굴 인증

  • Jung Byung-Hee;Park Choong-Shik;Kim Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.336-343
    • /
    • 2006
  • 본 논문에서는 여권 영 상에서 PCA 알고리즘을 이용한 얼굴 인증과 개선된 퍼지 신경망을 이용한 여권 코드 인식 방법을 제안한다. 본 논문에서는 여권영상에 대해 소벨 연산자를 이용하여 에지를 추출하고 에지가 추출된 영상을 수평 스미어링하여 여권코드 영역을 추출한다. 추출된 여권 코드 영역의 기울기를 검사하여 기울기 보정을 하고, 여권 코드 영역을 이진화 한다. 이진화된 여권 코드 영역에 대하여 8방향윤곽선 추적 알고리즘을 적용하여 여권 코드를 추출한다. 추출된 여권 코드는 퍼지 신경망을 개선하여 여권 코드 인식에 적용한다. 개선된 퍼지 신경 망은 입력층과 중간층 사이의 학습 구조로는 FCM 클러스터링 알고리즘을 적용하고 중간층과 출력층 사이의 학습은 일반화된 델타학습 방법을 적용한다. 그리고 학습 성능을 개선하기 위하여 중간층과 출력층의 가중치 조정에 적용되는 학습률을 동적으로 조정하기 위해 퍼지 제어 시스템을 적용한다. 제안된 퍼지 신경망은 목표값과 출력값의 차이에 대한 절대값이 ${\epsilon}$ 보다 적거나 같으면 정확으로 분류하고 크면 부정확으로 분류하여 정확의 총 개수를 퍼지 제어 시스템에 적용하여 학습률과 모멘텀을 동적으로 조정한다. 여권의 주어진 규격에 근거하여 사진 영역을 추출하고 추출된 사진 영역에 대하여 YCbCr와 RGB 정보를 이용하여 얼굴영역을 추출한다. 추출된 얼굴 영역을 PCA 알고리즘과 스냅샷(Snap-Shot) 방법을 적용하여 얼굴 영역의 위조를 판별한다. 제안된 방법의 여권 코드 인식과 얼굴 인증의 성능을 평가하기 위하여 실제 여권 영상에 적용한 결과, 기존의 방법보다 여권 코드 인식과 얼굴 인증에 있어서 효율적인 것을 확인하였다.s, whereas AVs provide much better security.크는 기준년도부터 2031년까지 5년 단위로 계획된 장래도로를 반영하여 구축된다. 교통주제도 및 교통분석용 네트워크는 국가교통DB구축사업을 통해 구축된 자료로서 교통체계효율화법 제9조의4에 따라 공공기관이 교통정책 및 계획수립 등에 활용할 수 있도록 제공하고 있다. 건설교통부의 승인절차를 거쳐 제공하며 활용 후에는 갱신자료 및 활용결과를 통보하는 과정을 거치도록 되어있다. 교통주제도는 국가의 교통정책결정과 관련분야의 기초자료로서 다양하게 활용되고 있으며, 특히 ITS 노드/링크 기본지도로 활용되는 등 교통 분야의 중요한 지리정보로서 구축되고 있다..20{\pm}0.37L$, 72시간에 $1.33{\pm}0.33L$로 유의한 차이를 보였으므로(F=6.153, P=0.004), 술 후 폐환기능 회복에 효과가 있다. 4) 실험군과 대조군의 수술 후 노력성 폐활량은 수술 후 72시간에서 실험군이 $1.90{\pm}0.61L$, 대조군이 $1.51{\pm}0.38L$로 유의한 차이를 보였다(t=2.620, P=0.013). 5) 실험군과 대조군의 수술 후 일초 노력성 호기량은 수술 후 24시간에서 $1.33{\pm}0.56L,\;1.00{\ge}0.28L$로 유의한 차이를 보였고(t=2.530, P=0.017), 술 후 72시간에서 $1.72{\pm}0.65L,\;1.33{\pm}0.3L$로 유의한 차이를 보였다(t=2.540, P=0.016). 6) 대상자의 술 후 폐환기능에 영향을 미치는 요인은 성별로 나타났다. 이에 따

  • PDF

The Classification of Fatty Liver by Ultrasound Imaging using Computerizing Method (컴퓨터 기법을 이용한 초음파 영상에서의 지방간 분류)

  • Jang, Hyun-Woo;Kim, Kwang-Beak;Kim, Chang Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2206-2212
    • /
    • 2013
  • We propose a method for the classification of fatty liver by ultrasound imaging using Fuzzy Contrast Enhancement Technique and FCM. ROI images are extracted after removal of information data except ultrasound image of the liver and the kidney then image contrast is improved by Fuzzy Contrast Enhancement Algorithm. The images applied Fuzzy Contrast Enhancement Technique is applied average binarization then ROI images of liver and kidney parenchyma are extracted using Blob algorithm. Representative brightness is extracted in the liver and kidney images using the most frequent brightness level after classification of 10 brightness levels. We applied this method to ultrasound images and a radiologist confirmed the accuracy of diagnosis for fatty liver. This method would be a model for automatic method in the diagnosis of fatty liver.

Computational Vision and Fuzzy Systems Laboratory (무기본형 기초의 퍼지 클러스터링에 대한 빠른 접근)

  • Hwang, Chul;Lee, Jung-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.1-4
    • /
    • 2000
  • 본 논문에서는 패턴 데이터(pattern data) 의 분할(partitioning)위하여, 계산량의 단축할 수 있는 효과적인 퍼지 클러스터링 알고리즘(fuzzy clustering algorithm)을 제시한다. 본 논문에 제시된 알고리즘은 두 단계로 수행된다. 첫번째 단계는, 개선된 FCM(Fuzzy C-means)방법에 의해 입력 패턴틀에 대해, 단지 두 번의 반복 수행과정만을 거쳐, 충분히 많은 개수의 초기 클러스터 중 심(center)를 결정한다. 다음 단계에서는, 본 논문에 제시될 클러스터 합치기 알고리즘(cluster merging algorithm)을 통해 각 클러스터의 부피(volume)에 따라 클러스터들을 합치는 과정(merging process)을 하게 된다. 결과적으로 일정한 제한된 개수의 무정형(amorphous)의 클러스터틀의 효과적으로 표현될 수 있다. 본 논문의 마지막에 제시될 실험 결과들은 제시된 방법의 유용성을 보여줄 것이다.

  • PDF

Region-based Multi-level Thresholding for Color Image Segmentation (영역 기반의 Multi-level Thresholding에 의한 컬러 영상 분할)

  • Oh, Jun-Taek;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.6 s.312
    • /
    • pp.20-27
    • /
    • 2006
  • Multi-level thresholding is a method that is widely used in image segmentation. However most of the existing methods are not suited to be directly used in applicable fields and moreover expanded until a step of image segmentation. This paper proposes region-based multi-level thresholding as an image segmentation method. At first we classify pixels of each color channel to two clusters by using EWFCM(Entropy-based Weighted Fuzzy C-Means) algorithm that is an improved FCM algorithm with spatial information between pixels. To obtain better segmentation results, a reduction of clusters is then performed by a region-based reclassification step based on a similarity between regions existing in a cluster and the other clusters. The clusters are created using the classification information of pixels according to color channel. We finally perform a region merging by Bayesian algorithm based on Kullback-Leibler distance between a region and the neighboring regions as a post-processing method as many regions still exist in image. Experiments show that region-based multi-level thresholding is superior to cluster-, pixel-based multi-level thresholding, and the existing mettled. And much better segmentation results are obtained by the post-processing method.

Recognition System of Car License Plate using Fuzzy Neural Networks (퍼지 신경망을 이용한 자동차 번호판 인식 시스템)

  • Kim, Kwang-Baek;Cho, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.313-319
    • /
    • 2007
  • In this paper, we propose a novel method to extract an area of car licence plate and codes of vehicle number from a photographed car image using features on vertical edges and a new Fuzzy neural network algorithm to recognize extracted codes. Prewitt mask is used in searching for vertical edges for detection of an area of vehicle number plate and feature information of vehicle number palate is used to eliminate image noises and extract the plate area and individual codes of vehicle number. Finally, for recognition of extracted codes, we use the proposed Fuzzy neural network algorithm, in which FCM is used as the learning structure between input and middle layers and Max_Min neural network is used as the learning structure within inhibition and output layers. Through a variety of experiments using real 150 images of vehicle, we showed that the proposed method is more efficient than others.

  • PDF

Cluster Merging Using Enhanced Density based Fuzzy C-Means Clustering Algorithm (개선된 밀도 기반의 퍼지 C-Means 알고리즘을 이용한 클러스터 합병)

  • Han, Jin-Woo;Jun, Sung-Hae;Oh, Kyung-Whan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.517-524
    • /
    • 2004
  • The fuzzy set theory has been wide used in clustering of machine learning with data mining since fuzzy theory has been introduced in 1960s. In particular, fuzzy C-means algorithm is a popular fuzzy clustering algorithm up to date. An element is assigned to any cluster with each membership value using fuzzy C-means algorithm. This algorithm is affected from the location of initial cluster center and the proper cluster size like a general clustering algorithm as K-means algorithm. This setting up for initial clustering is subjective. So, we get improper results according to circumstances. In this paper, we propose a cluster merging using enhanced density based fuzzy C-means clustering algorithm for solving this problem. Our algorithm determines initial cluster size and center using the properties of training data. Proposed algorithm uses grid for deciding initial cluster center and size. For experiments, objective machine learning data are used for performance comparison between our algorithm and others.

Developments of Parking Control System Using Color Information and Fuzzy C-menas Algorithm (컬러 정보와 퍼지 C-means 알고리즘을 이용한 주차관리시스템 개발)

  • 김광백;윤홍원;노영욱
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.87-101
    • /
    • 2002
  • In this paper, we proposes the car plate recognition and describe the parking control system using the proposed car plate recognition algorithm. The car plate recognition system using color information and fuzzy c-means algorithm consists of the extraction part of a car plate from a car image and the recognition part of characters in the extracted car plate. This paper eliminates green noise from car image using the mode smoothing and extract plate region using green and white information of RGB color. The codes of extracted plate region is extracted by histogram based approach method and is recognized by fuzzy c-means algorithm. For experimental, we tested 80 car images. We shows that the proposed extraction method is better than that from the color information of RGB and HSI, respectively. So, we can know that the proposed car plate recognition method using fuzzy c-means algorithm was very efficient. We develop the parking control system using the proposed car plate recognition method, which showed performance improvement by the experimental results.

  • PDF

Performance Improvement on MFCM for Nonlinear Blind Channel Equalization Using Gaussian Weights (가우시안 가중치를 이용한 비선형 블라인드 채널등화를 위한 MFCM의 성능개선)

  • Han, Soo-Whan;Park, Sung-Dae;Woo, Young-Woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.407-412
    • /
    • 2007
  • 본 논문에서는 비선형 블라인드 채널등화기의 구현을 위하여 가우시안 가중치(gaussian weights)를 이용한 개선된 퍼지 클러스터(Modified Fuzzy C-Means with Gaussian Weights: MFCM_GW) 알고리즘을 제안한다. 제안된 알고리즘은 기존 FCM 알고리즘의 유클리디언 거리(Euclidean distance) 값 대신 Bayesian Likelihood 목적함수(fitness function)와 가우시안 가중치가 적용된 멤버쉽 매트릭스(partition matrix)를 이용하여, 비선형 채널의 출력으로 수신된 데이터들로부터 최적의 채널 출력 상태 값(optimal channel output states)들을 직접 추정한다. 이렇게 추정된 채널 출력 상태 값들로 비선형 채널의 이상적 채널 상태(desired channel states) 벡터들을 구성하고, 이를 Radial Basis Function(RBF) 등화기의 중심(center)으로 활용함으로써 송신된 데이터 심볼을 찾아낸다. 실험에서는 무작위 이진 신호에 가우시안 잡음이 추가된 데이터를 사용하여 기존의 Simplex Genetic Algorithm(GA), 하이브리드 형태의 GASA(GA merged with simulated annealing (SA)), 그리고 과거에 발표되었던 MFCM 등과 그 성능을 비교 분석하였으며, 가우시안 가중치가 적용된 MFCM_GW를 이용한 채널등화기가 상대적으로 정확도와 속도 면에서 우수함을 보였다.

  • PDF

A Watershed-based Texture Segmentation Method Using Marker Clustering (마커 클러스터링을 이용한 유역변환 기반의 질감 분할 기법)

  • Hwang, Jin-Ho;Kim, Won-Hee;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.4
    • /
    • pp.441-449
    • /
    • 2007
  • In clustering for image segmentation, large amount of computation and typical segmentation errors have been important problems. In the paper, we suggest a new method for minimizing these problems. Markers in marker-controlled watershed transform represent segmented areas because they are starting-points of extending areas. Thus, clustering restricted by marker pixels can reduce computational complexity. In our proposed method, the markers are selected by Gabor texture energy, and cluster information of them are generated by FCM (fuzzy c-mean) clustering. Generated areas from watershed transform are merged by using cluster information of markers. In the test of Brodatz' texture images, we improved typical partition-errors obviously and obtained less computational complexity compared with previous FCM clustering algorithms. Overall, it also took regular computational time.

  • PDF