• 제목/요약/키워드: 개선된 퍼지 ART

검색결과 50건 처리시간 0.023초

퍼지 신경망과 퍼지 추론 기법을 이용한 한방 자가 검진 시스템 개발 (System Development of Self Health Examination on Oriental Medicine using Fuzzy Neural Network and Fuzzy Inference Method)

  • 조승군;전현진;노현찬;신상호;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2010년도 춘계학술대회
    • /
    • pp.189-192
    • /
    • 2010
  • 본 논문에서는 개선된 Fuzzy ART 알고리즘을 이용하여 한의학을 기반으로 증상에 대한 질병을 진단하고 민간요법을 제시하는 한방 자가 검진 시스템을 제안한다. 제안된 방법은 신체 부위를 전신, 머리, 배, 다리 등 17부위로 분류하여 사용자가 증상을 선택하도록 제시하고, 사용자가 선택한 증상과 질병에 포함된 증상 그리고 결과로 도출될 질병간의 선택증상 비율에 대한 우선순위를 개선된 Fuzzy ART 알고리즘에 적용하여 증상을 분류한 후, 퍼지 추론 규칙을 적용하여 질병을 도출한다. 도출된 질병과 그 질병에 대한 원인 및 민간요법을 결과로 제시한다. 데이터베이스에 구축되어 있는 질병 데이터는 통계청에서 정리하여 배포한 한국표준질병 사인분류(K.C.D)를 토대로 표준 질병 정보를 얻어 각 질병의 증상과 원인, 민간요법을 정리한 후, 마지막으로 한의학 전문의의 검증을 거쳐 데이터베이스를 구축하였다. 제안된 한방 자가 검진 시스템에 대한 한의학 전문의의 분석 및 검증 결과, 본 시스템의 증상에 대한 질병 도출이 높은 정확도를 보임을 확인하였다.

  • PDF

Self-generation을 이용한 퍼지 지도 학습 알고리즘 (Fuzzy Supervised Learning Algorithm by using Self-generation)

  • 김광백
    • 한국멀티미디어학회논문지
    • /
    • 제6권7호
    • /
    • pp.1312-1320
    • /
    • 2003
  • 본 논문에서는 하나의 은닉층을 가지는 다층 구조 신경망이 고려되었다. 다층 구조 신경망에서 널리 사용되는 오루 역전파 학습 방법은 초기 가중치와 불충분한 은닉층 노드 수로 인하여 지역 최소화에 빠질 가능성이 있다. 따라서 본 논문에서는 퍼지 단층 퍼셉트론에 ART1을 결합한 방법으로, 은닉층의 노드를 자가 생성(self-generation)하는 퍼지 지도 학습 알고리즘을 제안한다. 입력층에서 은닉층으로 노드를 생성시키는 방식은 ART1을 수정하여 사용하였고, 가중치 조정은 특정 패턴에 대한 저장 패턴을 수정하도록 하는 winner-take-all 방식을 적용하였다. 제안된 학습 방법의 성능을 평가하기 위하여 학생증 영상을 대상으로 실험한 결과. 기존의 오류 역전파 알고즘보다 연결 가중치들이 지역 최소화에 위치할 가능성이 줄었고 학습 속도 및 정체 현상이 개선되었다.

  • PDF

개선된 퍼지 ART 알고리즘을 이용한 한방 자가 진단 시스템 (Self Health Diagnosis System of Oriental Medicine Using Enhanced Fuzzy ART Algorithm)

  • 김광백;우영운
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.27-34
    • /
    • 2010
  • 최근 여러 인터넷 서비스 업체에서 온라인 의료 진단 서비스 시스템을 제공하고 있다. 대부분 의료 진단 서비스 시스템은 서양 의학을 기초로 질병에 대한 처방이나 식이요법 등을 제공하기 때문에 전문 지식이 부족한 일반인들은 이용하기에 큰 어려움이 있다. 본 논문에서는 퍼지 ART 알고리즘을 적용하여 한국인 고유의 신체적 특성에 맞는 한의학 기반의 한방 자가 진단 시스템을 제안한다. 제안된 한방 자가 진단 시스템은 사용자가 제시한 증상과 이전에 진단 받았던 진료 기록을 바탕으로 이미 학습되어진 질병의 증상과 비교하여 신경망을 통해 유사도가 높은 상위 3개의 질병을 도출한다. 또한 상위 3개의 질병에 대해 질병의 전체적인 증상과 한의학 서적에서 제시한 민간요법을 제시한다. 질병과 증상에 대한 데이터베이스는 여러 한의학 서적을 통해 구축한 후 한의학 전문의의 검증을 거쳐 구현하였다. 제안된 한방 자가 진단 시스템은 진료 기록을 바탕으로 학습함으로써 기존의 질병 진단 시스템 보다 정확하게 질병을 진단한 것을 확인하였다.

Trace 변환과 펴지 기법을 이용한 곤충 발자국 인식 (Insect Footprint Recognition using Trace Transform and a Fuzzy Method)

  • 신복숙;차의영;우영운
    • 한국멀티미디어학회논문지
    • /
    • 제11권11호
    • /
    • pp.1615-1623
    • /
    • 2008
  • 이 논문에서는 곤충 발자국의 패턴을 찾아 개체를 인식하기 위해서, 개선된 SOM 알고리즘과 ART2 알고리즘을 사용하여 인식의 기본 영역을 추출한다. 또한 Trace 변환을 이용하여 발자국의 인식에 필요한 특징을 추출하고 개체를 판단하는 기법을 제안한다. 제안한 기법에서는 모폴로지 기법을 이용하여 region을 먼저 찾고, 개선된 SOM과 ART2 알고리즘을 이용하여 곤충의 크기와 종류에 관계없이 세그먼트를 추출한다. 그리고 곤충 발자국과 같이 다양한 변형이 존재하는 패턴에 적합한 특징값을 찾기 위해서 Trace 변환을 이용하고, 함수의 조합으로 재구성된 Triple 특징값을 이용하여 곤충별로 고유한 패턴을 찾아 인식 실험을 수행한다. 곤충 발자국에서 명확한 발자국과 그렇지 못한 발자국을 자동으로 결정하는 것이 매우 어렵다. 따라서 이와 같이 불확실한 대상을 제외시키지 않고 가능성의 대상으로 판단하고 분류하기 위해서 퍼지 가중치 평균을 이용하여 인식을 수행한다. 제안한 방법에 의한 곤충 발자국의 영역 추출과 인식 실험을 실시하고 그 결과를 제시하였다.

  • PDF

퍼지 제어 기법을 이용한 FCM 기반 RBF 네트워크 (FCM-based RBF Network Using Fuzzy Control Method)

  • 김태형;박충식;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제38차 하계학술발표논문집 16권1호
    • /
    • pp.149-154
    • /
    • 2008
  • FCM 기반 RBF 네트워크는 서로 다른 학습 구조가 결합된 혼합형 모델로서, 입력층과 중간층의 학습 구조는 FCM 알고리즘을 적용하고, 중간층과 출력층 사이의 학습 구조는 Max_Min 신경망을 적용한다. 입력층과 중간층의 학습시 입력벡터와 중간층의 노드중에서 중심과 입력벡터간의 가장 가까운 노드를 승자 노드로 선택하여 출력층으로 전달한다. 그리고 중간층과 출력층 사이의 학습 구조는 Max_Min 신경망을 적용하여 중간층의 승자 뉴런이 출력층의 입력벡터로 적용한다. 하지만 많은 패턴이 입력벡터로 제시될 경우 학습 성능이 저하되는 단점이 있다. 따라서 본 논문에서는 중간층과 출력층의 학습 구조인 Max_Min 알고리즘의 학습 성능을 개선시키기 위해 퍼지 제어시스템을 이용하여 학습률을 동적으로 조정하는 퍼지 제어 기법을 이용한 FCM 기반 RBF 네트워크를 제안한다. 제안된 방법의 학습 성능을 평가하기 위하여 컨테이너 영상에서 추출한 숫자, 영문 식별자를 학습 데이터로 적용한 결과, 기존의 ART2 기반 RBF 네트워크보다 학습 시간이 적게 소요되고, 학습의 수렴성이 개선된 것을 확인하였다.

  • PDF

조건 확률을 퍼지화한 학습 법칙을 사용하는 퍼지 신경회로망 모델 (The Fuzzy Neural Network Utilizing A Fuzzy Learning Rule)

  • 김용수;함창현;백용선
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.207-210
    • /
    • 2000
  • 학습법칙은 신경회로망의 성능을 좌우하는 중요한 요소의 하나이다. Kohonen의 합습법칙등이 개발되어 사용되어 왔으나 Underutilization 문제가 있어 실제 사용사에 문제가 있어 왔다. 본 논문에서 제시하는 학습법칙은 이를 부분적으로 해결하였다. 또한 이 학습법칙을 ART(Adaptive Resonance Theory)-1과 Kohonen의 자기 구조 특징 지도의 장점을 조합한 개선된 IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하였고, 성능을 평가하기 위해 가우시안 분포의 데이터와 IRIS 데이터를 각각 사용하여 실험하였다.

  • PDF

퍼지 RBF 네트워크를 이용한 컨테이너 인식 시스템 (Container Recognition System using Fuzzy RBF Network)

  • 김재용;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.497-503
    • /
    • 2005
  • 본 논문에서는 퍼지 RBF 네트워크를 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 잡음으로 인하여 식별자의 형태가 변형될 수 있기 때문에 일정한 규칙으로 찾기는 힘들다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지 추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 4방향 윤광선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 개별 식별자 인식을 위해 퍼지 C-Means 알고리즘을 이용한 퍼지 RBF 네트워크를 제안하여 개별 식별자에 적용한다. 제안된 퍼지 RBF 네트워크는 퍼지 C-Means 알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습에는 일반화된 델타 학습 방법과Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출방법이 개선되었다. 그리고 기존의 ART2 기반 RBF 네트워크보다 제안된 퍼지 RBF 네트워크가 컨테이너 식별자의 학습 및 인식에 있어서 우수함을 확인하였다.

  • PDF

개선된 유사성 측정 방법과 동적인 경계 변수를 이용한 ART1 알고리즘 (ART1 Algorithm by Using Enhanced Similarity Test and Dynamical Vigilance Threshold)

  • 문정욱;김광백
    • 한국정보통신학회논문지
    • /
    • 제7권6호
    • /
    • pp.1318-1324
    • /
    • 2003
  • 기존의 ART1 알고리즘은 입력 패턴과 저장 패턴간의 유사성 검증 방법의 문제점과 경계 변수에 따라 클러스터의 수와 인식률이 좌우되는 문제점이 있다. 본 논문에서는 기존의 ART1 알고리즘을 개선하기 위하여 입력 패턴과 저장 패턴간의 Exclusive NOR의 놈 (norm) 비율을 사용하는 유사성 측정 방법과 퍼지 접속 연산자를 이용하여 유사성에 따라 경계변수를 동적으로 조정하는 방법을 적용한 개선된 ART1을 제안한다. 제안된 방법에서는 1의 개수 비율이 아니라 같은 값을 가진 노드의 비율을 사용하여 유사성을 측정하고 경계 변수는 Yager의 합 접속 연산자를 사용하여 동적으로 조정한다. 제안된 방법의 성능을 확인하기 위하여 26개의 영문 패턴 분류 문제와 잡음이 있는 패턴 인식 문제를 대상으로 실험한 결과, 제안된 방법이 기존의 ART1 알고리즘 보다 경계 변수의 설정에 따라 민감하게 반응하지 않았고 인식률에서도 개선된 것을 확인하였다.

자가 생성을 이용한 퍼지 다층 퍼셉트론 (Fuzzy Multilayer Perceptron by Using Self-Generation)

  • 백인호;김광백
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.469-473
    • /
    • 2003
  • 다층 구조 신경망에서 널리 사용되는 오류 역전파 알고리즘은 초기 가중치와 불충분한 은닉층의 노드수로 인하여 지역 최소화에 빠질 가능성이 있다. 따라서 본 논문에서는 오류 역전파 알고리즘에서 은닉층의 노드 수를 설정하는 문제와 ARTI에서 경계 변수의 설정에 따라 인식률이 저하되는 문제점을 개선하기 위하여 ARTI과 Max-Min 신경망을 결합한 퍼지 다층 퍼셉트론을 제안한다. 제안된 자가 생성을 이용한 퍼지 다층 퍼셉트론은 입력층에서 은닉층으로 노드를 생성시키는 방식은 ARTI을 적용하였고, 가중치 조정은 특정 패턴에 대한 저장 패턴을 수정하도록 하는 winner-take-all 방식을 적용하였다. 제안된 학습 방법의 성능을 평가하기 위하여 학생증 영상을 대상으로 실험한 결과, 기존의 오류 역전파 알고즘보다 연결 가중치들이 지역 최소화에 위치할 가능성이 줄었고 학습 속도 및 정체 현상이 개선되었다.

  • PDF

영상 인식을 위한 생리학적 퍼지 신경망 (Physiological Fuzzy Neural Networks for Image Recognition)

  • 김광백;문용은;박충식
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.169-185
    • /
    • 2005
  • 신경계의 뉴런 구조는 흥분 뉴런과 억제 뉴런으로 구성되며 각각의 흥분 뉴런과 억제 뉴런은 주동근 뉴런(agonistic neuron)에 의해 활성화되며 길항근 뉴런(antagonist neuron)에 의해 비활성화 된다. 본 논문에서는 인간 신경계의 생리학적 뉴런 구조를 분석하여 퍼지 논리를 이용한 생리학적 퍼지 신경망을 제안한다. 제안된 구조는 주동근 뉴런에 의해 흥분 뉴런이 될 수 있는 뉴런들을 선택하여 흥분시켜 출력층으로 전달하고 나머지 뉴런들을 억제시켜 출력층에 전달시키지 않는다. 신경계를 기반으로 한 제안된 생리학적 퍼지 신경망의 학습구조는 입력층, 학습 데이터의 특징을 분류하는 중간층, 그리고 출력층으로 구성된다. 제안된 퍼지 신경망의 학습 및 인식 성능을 평가하기 위해 정확성이 요구되는 의학의 한 분야인 기관지 편평암 영상인식과 영상 인식의 주요 응용 분야인 차량 번호판 인식에 적용하여 기존의 신경망과 성능을 비교 분석하였다. 실험 결과에서는 제안된 생리학적 퍼지 신경망이 기존의 신경망보다 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 인식에 있어서도 우수한 성능이 있음을 확인하였다.

  • PDF