• 제목/요약/키워드: 개선된 신경망

검색결과 729건 처리시간 0.026초

모듈화 된 신경 회로망을 이용한 음성의 Narrowband에서 Wideband로의 변환 (Narrowband to Wideband Conversion of Speech using Modularized Neural Network)

  • 우동헌;고참한;강현민;김유신;김형순
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2001년도 추계학술발표대회 논문집 제20권 2호
    • /
    • pp.21-24
    • /
    • 2001
  • 본 논문은 신경 회로망을 이용하여, 전화망 대역의 음성, 즉, narrowband 음성에서 wideband 음성을 복원하고자 했다. BP 알고리즘을 사용하는 기존의 신경 회로망의 경우에는 음성과 같이 복잡하고 크기가 큰 훈련데이터에 대해서는 훈련이 제대로 되지 않는 단점이 있다. 그러므로 븐 논문에서는 이를 해결하기 위해 입력으로 들어온 LPC 켑스트럼 벡터를 k-means 알고리즘을 이용하여 미리 정한 개수의 cluster로 나눈 다음, 각각의 cluster에 대해 독립적인 신경 회로망을 적용했다 이로 인해 각각의 신경 회로망은 제한되고 서로 상관관계가 많은 음성들만 훈련하면 되므로, 기존의 신경 회로망에서 생기는 훈련의 정체를 개선할 수 있었다. 또 clustering 과정에서 생기는 오류를 보완하기 위해 후보신경 로망들의 출력에 fuzzy 개념을 적용해서 최종 출력을 내도록 했다 실험 결과에서, 제안한 알고리즘은 기존의 codebook mapping 알고리즘보다 스펙트럼 거리척도에 의한 비교 및 주관적인 음질 평가 양쪽에서 개선된 성능을 보였다.

  • PDF

영상 인식을 위한 생리학적 퍼지 신경망 (Physiological Fuzzy Neural Networks for Image Recognition)

  • 김광백;문용은;박충식
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.169-185
    • /
    • 2005
  • 신경계의 뉴런 구조는 흥분 뉴런과 억제 뉴런으로 구성되며 각각의 흥분 뉴런과 억제 뉴런은 주동근 뉴런(agonistic neuron)에 의해 활성화되며 길항근 뉴런(antagonist neuron)에 의해 비활성화 된다. 본 논문에서는 인간 신경계의 생리학적 뉴런 구조를 분석하여 퍼지 논리를 이용한 생리학적 퍼지 신경망을 제안한다. 제안된 구조는 주동근 뉴런에 의해 흥분 뉴런이 될 수 있는 뉴런들을 선택하여 흥분시켜 출력층으로 전달하고 나머지 뉴런들을 억제시켜 출력층에 전달시키지 않는다. 신경계를 기반으로 한 제안된 생리학적 퍼지 신경망의 학습구조는 입력층, 학습 데이터의 특징을 분류하는 중간층, 그리고 출력층으로 구성된다. 제안된 퍼지 신경망의 학습 및 인식 성능을 평가하기 위해 정확성이 요구되는 의학의 한 분야인 기관지 편평암 영상인식과 영상 인식의 주요 응용 분야인 차량 번호판 인식에 적용하여 기존의 신경망과 성능을 비교 분석하였다. 실험 결과에서는 제안된 생리학적 퍼지 신경망이 기존의 신경망보다 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 인식에 있어서도 우수한 성능이 있음을 확인하였다.

  • PDF

적응적 학습방법과 초기값의 개선에 의한 신경망 모형을 이용한 시계열 예측 (A Time Series Forecasting Using Neural Network by Modified Adaptive learning Rates and Initial Values)

  • 윤여창;이성덕
    • 한국정보처리학회논문지
    • /
    • 제5권10호
    • /
    • pp.2609-2614
    • /
    • 1998
  • 본 연구에서는 신경망 모형을 이용한 시계열 예측에 있어서 분석할 시계열의 특성에 맞는 적응적 학습률을 구하고 초기 값의 동적인 적용을 통한 개선된 학습방법을 이용하여 신경망 예측을 하고 통계적인 Box-Jenkins예측 결과와 비교해 봄으로써 두 방법간의 시계열 예측 효율성을 비교한다. 신경망 모형에 맞는 적응적 학습률은 표준 직교 배열표에 의해 실험계획을 한 25가지의 모수 조합으로부터 구하고, 신경망 학습의 초기값은 Easton의 제어상자를 동적으로 적용하여 실시간으로 선택할 수 있도록한다. 실증분석에 적용된 시계열자료는 1700년부터 1988년까지의 태양 흑점 자료이다.

  • PDF

광역 다중센서 자료를 사용한 강우예측기법 개선에 관한 연구 (Development of a Rainfall Forecast Model Using Wide Range Multi-Sensor Data)

  • 김광섭;한건연
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.123-126
    • /
    • 2005
  • 본 연구에서는 상층기상자료, 자동 기상 관측망 자료 및 신경망기법을 사용하여 단시간 강우 예측 모형을 개발하였다. 호우를 동반한 이송 기상 시스템의 이동 경로가 라디오존데로부터 획득할 수 있는 상층기상 자료 즉 상층 풍향자료와 동일한 방향으로 이동한다는 가정 하에 원거리에서 발생하는 기상현상의 발달과정을 판단 할 수 있는 알고리즘을 개발하고, 이러한 원거리 입력 자료와 예측하고자 하는 값 사이의 비선형 상관 관계를 연결하는 기법으로 인공 신경망 기법을 도입하였다. 개발된 모형을 2002년 태풍 루사로 인하여 큰 피해를 입은 감천지역에 적용하였다. 포항과 오산의 라디오존데에서 획득한 700mb에서의 풍향자료와 5년의 자료기간을 가지는 350개의 자동 기상 관측망 자료를 입력 자료로 사용하였으며 결과는 상층기상자료를 사용하지 않고 예측한 결과에 대하여 개선된 강우 예측결과를 보여주었다.

  • PDF

적응 역전파 알고리즘을 이용한 적응 수신기의 다중 신호 개선 (The Multisignal Improvement of Adaptive Receiver using Adaptive Back-Propagation Algorithm)

  • 김철영;장혁;석경휴;나상동
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2000년도 춘계종합학술대회
    • /
    • pp.188-194
    • /
    • 2000
  • 이동 통신에서 제한된 대역폭 채널에 내부 심볼 간섭을 감소시키기 위해, 등화기 기법을 필요로한다. 채널간의 비선형 왜곡을 효율적으로 다루는 대안을 가진 신경망을 사용하여 새로운 활성 함수로 구성된 적응 역전파 알고리즘을 연구한다. 신경망은 적응 역전파 알고리즘을 통해 신호를 복조하도록 학습한다. 특히 수정된 적응 역전파 알고리즘이 근접된 최적 수행성을 갖는 단일 및 다중 사용자 검출을 위한 샘플링 기법은 다중 사용자 환경에서 필요한 수신기들의 수행성을 평가하기 위한 시뮬레이션을 위하여 사용이 된다. 채널간의 비선형 왜곡에 효율적으로 다루기 위한 대안을 가진 신경망을 적용하여 본 논문에서 는 새로운 활성 함수로 구성된 적응 역전파 알고리즘을 제안하고, 컴퓨터 시뮬레이션에 의해서 분석된다. 반복적 최소 평균 자승(RLS) 알고리즘을 적용한 기존 수신기 및 적응 역전파 신경망과 비교하여, 채널 왜곡이 비선형 일 때에 비트 에러율(BER)이 현저하게 개선됨을 나타낸다. 적응 역전파 알고리즘 기법을 통해 기존 수신기와 신경망을 사용한 수신기의 수행을 컴퓨터 시뮬레이션을 통해 비교 분석하여 제안된 신경망 수신기의 성능이 우수함을 인증한다.

  • PDF

벨형 퍼지 소속함수를 적용한 ANFIS 기반 퍼지 웨이브렛 신경망 시스템의 연구 (A Study on Fuzzy Wavelet Neural Network System Based on ANFIS Applying Bell Type Fuzzy Membership Function)

  • 변오성;조수형;문성용
    • 대한전자공학회논문지TE
    • /
    • 제39권4호
    • /
    • pp.363-369
    • /
    • 2002
  • 본 논문은 적응성 뉴로-퍼지 인터페이스 시스템(Adaptive Neuro-Fuzzy Inference System : ANFIS)과 웨이브렛 변환 다중해상도 분해(multi-resolution Analysis : MRA)을 기반으로 한 웨이브렛 신경망을 가지고 임의의 비선형 함수 학습 근사화를 개선하는 것이다. ANFIS 구조는 벨형 퍼지 소속 함수로 구성이 되었으며, 웨이브렛 신경망은 전파 알고리즘과 역전파 신경망 알고리즘으로 구성되었다. 이 웨이브렛 구성은 단일 크기이고, ANFIS 기반 웨이브렛 신경망의 학습을 위해 역전파 알고리즘을 사용하였다. 1차원과 2차원 함수에서 웨이브렛 전달 파라미터 학습과 ANFIS의 벨형 소속 함수를 이용한 ANFIS 모델 기반 웨이브렛 신경망의 웨이브렛 기저 수 감소와 수렴 속도 성능이 기존의 알고리즘 보다 개선되었음을 확인하였다.

퍼지 신경망을 이용한 자동차 번호판 인식 시스템 (Recognition System of Car License Plate using Fuzzy Neural Networks)

  • 김재용;이동민;김영주;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.352-357
    • /
    • 2006
  • 매년 도로와 주차공간의 확장보다 차량의 수가 빠르게 증가하여 그에 따라 불법 주차 관리의 어려움이 증가하고 있다. 이러한 문제점을 해결하기 위해 지능형 주차 관리 시스템이 필요하게 되었다. 본 논문에서는 획득된 차량 영상에서 수직 에지의 특징을 이용하여 번호판 영역과 개별 코드를 추출하고, 추출된 개별 코드를 퍼지 신경망 알고리즘을 제안하여 학습 및 인식한다. 본 논문에서는 차량 번호판 영역을 검출하기 위해 프리윗 마스크를 적용하여 수직 에지를 찾고, 차량 번호판의 정보를 이용하여 잡음을 제거한 후에 차량 번호판 영역을 추출한다. 추출된 차량 번호판 영역은 반복 이진화방법을 적용하여 이진화하고, 이진화된 차량 번호판 영역에 대해서 수직 분포도와 수평 분포도를 이용하여 번호판의 개별 코드를 추출한다 추출된 개별 코드는 제안된 퍼지 신경망 알고리즘을 적용하여 인식한다. 제안된 퍼지 신경망은 입력층과 중간층간의 학습 구조로는 FCM 알고리즘을 적용하고 중간층과 출력층간의 학습 구조는 Max_Min 신경망을 적용한다. 제안된 방법의 추출 및 인식 성능을 평가하기 위하여 실제 차량 영상 150장을 대상으로 실험한 결과, 기존의 차량 번호판 인식 방법보다 효율적이고 인식 성능이 개선된 것을 확인하였다.

  • PDF

자동작곡시스템에서 쉼표용 인공신경망 도입 및 개선된 박자후처리와 초기멜로디 처리 (Adoption of Artificial Neural Network for Rest, Enhanced Postprocessing of Beats, and Initial Melody Processing for Automatic Composition System)

  • 김경환;정성훈
    • 디지털콘텐츠학회 논문지
    • /
    • 제17권6호
    • /
    • pp.449-459
    • /
    • 2016
  • 본 논문에서는 기존의 인공신경망을 이용한 자동작곡 방법에서 발생한 세 가지 문제점을 개선하는 새로운 방법을 제안한다. 첫 번째 문제는 인공신경망이 출력한 곡의 박자를 음악이론에 맞도록 후처리 하는 것에서 모든 경우를 처리하지 못하여 발생한 문제이다. 두 번째 문제는 음표를 학습하는 인공신경망에 음표와 구분되는 큰 값으로 쉼표를 같이 학습하다보니 음표공간이 왜곡되어 발생하는 문제이다. 마지막 문제는 새로운 곡 작곡 시 사용자가 작곡해서 넣어준 초기 멜로디와 박자가 인공신경망이 출력하는 나머지 멜로디와 박자와 어울리지 못하여 발생하는 문제이다. 본 논문에서는 이러한 문제를 해결하기 위하여 개선된 박자 후처리 알고리즘과 초기 멜로디 처리 방법을 제안하였으며 쉼표용 인공신경망을 새로이 도입하였다. 실험결과 새로 제안한 방법이 기존의 방법에서 발생한 세 가지 문제점을 모두 해결하는 것으로 판명되었다.

인공신경망과 장단기메모리 모형의 유출량 모의 성능 분석 (Comparing the Performance of Artificial Neural Networks and Long Short-Term Memory Networks for Rainfall-runoff Analysis)

  • 김지혜;강문성;김석현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.320-320
    • /
    • 2019
  • 유역의 수문 자료를 정확하게 분석하는 것은 수리 구조물을 효율적으로 운영하기 위한 중요한 요소이다. 인공신경망(Artificial Neural Networks, ANNs) 모형은 입 출력 자료의 비선형적인 관계를 해석할 수 있는 모형으로 강우-유출 해석 등 수문 분야에 다양하게 적용되어 왔다. 이후 기존의 인공신경망 모형을 연속적인(sequential) 자료의 분석에 더 적합하도록 개선한 회귀신경망(Recurrent Neural Networks, RNNs) 모형과 회귀신경망 모형의 '장기 의존성 문제'를 개선한 장단기메모리(Long Short-Term Memory Networks, 이하 LSTM)가 차례로 제안되었다. LSTM은 최근에 주목받는 딥 러닝(Deep learning) 기법의 하나로 수문 자료와 같은 시계열 자료의 분석에 뛰어난 성능을 보일 것으로 예상되며, 수문 분야에서 이에 대한 적용성 평가가 요구되고 있다. 본 연구에서는 인공신경망 모형과 LSTM 모형으로 유출량을 모의하여 두 모형의 성능을 비교하고 향후 LSTM 모형의 활용 가능성을 검토하고자 하였다. 나주 수위관측소의 수위 자료와 인접한 기상관측소의 강우량 자료로 모형의 입 출력 자료를 구성하여 강우 사상에 대한 시간별 유출량을 모의하였다. 연구 결과, 1시간 후의 유출량에 대해서는 두 모형 모두 뛰어난 모의 능력을 보였으나, 선행 시간이 길어질수록 LSTM의 정확성은 유지되는 반면 인공신경망 모형의 정확성은 점차 떨어지는 것으로 나타났다. 앞으로의 연구에서 유역 내 다양한 수리 구조물에 의한 유 출입량을 추가로 고려한다면 LSTM 모형의 활용성을 보다 더 확장할 수 있을 것이다.

  • PDF

Merlin 툴킷을 이용한 한국어 TTS 시스템의 심층 신경망 구조 성능 비교 (Performance comparison of various deep neural network architectures using Merlin toolkit for a Korean TTS system)

  • 홍준영;권철홍
    • 말소리와 음성과학
    • /
    • 제11권2호
    • /
    • pp.57-64
    • /
    • 2019
  • 본 논문에서는 음성 합성을 위한 오픈소스 시스템인 Merlin 툴킷을 이용하여 한국어 TTS 시스템을 구성한다. TTS 시스템에서 HMM 기반의 통계적 음성 합성 방식이 널리 사용되고 있는데, 이 방식에서 문맥 요인을 포함시키는 음향 모델링 구성의 한계로 합성 음성의 품질이 저하된다고 알려져 있다. 본 논문에서는 여러 분야에서 우수한 성능을 보여 주는 심층 신경망 기법을 적용하는 음향 모델링 아키텍처를 제안한다. 이 구조에는 전연결 심층 피드포워드 신경망, 순환 신경망, 게이트 순환 신경망, 단방향 장단기 기억 신경망, 양방향 장단기 기억 신경망 등이 포함되어 있다. 실험 결과, 문맥을 고려하는 시퀀스 모델을 아키텍처에 포함하는 것이 성능 개선에 유리하다는 것을 알 수 있고, 장단기 기억 신경망을 적용한 아키텍처가 가장 좋은 성능을 보여주었다. 그리고 음향 특징 파라미터에 델타와 델타-델타 성분을 포함하는 것이 성능 개선에 유리하다는 결과가 도출되었다.