• Title/Summary/Keyword: 개방형 콘트롤러

Search Result 4, Processing Time 0.023 seconds

Characteristics of Open-Loop Current Sensor with Temperature Compensation Circuit (온도보상회로를 부착한 개방형 전류측정기의 특성)

  • Ku, Myung-Hwan;Park, Ju-Gyeong;Cha, Guee-Soo;Kim, Dong-Hui;Choi, Jong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8306-8313
    • /
    • 2015
  • Open-type current sensors have been commonly used for DC motor controller, AC variable controller and Uninterruptible Power Supply. Recently they have begun to be used more widely, as the growth of renewable energy and smart-grid in power system. Considering most of the open-type current sensors are imported, developing the core technology needed to produce open-type current sensors is required. This paper describes the development and test results of open-type current sensors. Design of C type magnetic core, selection and test of a Hall sensor, design of current source circuit and signal conditioning circuit are described. 100A class DIP(Dual In-line Package) type and SMD(Surface Mount Devide) type open-type current sensors was made and tested. Test results show that the developed open-type current sensor satisfies the accuracy requirement of 2% and linearity requirement of 2% at 100 A of DC and AC current of 60Hz. Temperature compensation was carried out by using a temperature compensation circuit with NTC(Negative Temperature Coefficient) thermistor and the effect of the temperature compensation are described.

Experiment Based Dynamic Analysis for High Accuracy Control of Feed System (이송계 고정도 제어를 위한 동특성 실험분석)

  • Kim, Shung-Hyun;Jeong, Jae-Hyun;Kim, Jae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.729-737
    • /
    • 2009
  • This paper introduces the machine tools feed system, which can be optimized the control's performance through simulation and the adjustment of the mechanical components. One method simulates the frequency response of the speed-loop with the design value using the MATLAB application, so that all of the interpolation axis can be equal to the response bandwidth, resulting in a high accuracy rate. The other method sees the mechanical component being adjusted by analyzing the results of various experiments. Lastly, this client's program is able to change the parameters that are related to the FFD, as well as the parameters in the friction compensation of the OPEN-CNC.

An Operations and Management Framework for The Integrated Software Defined Network Environment (소프트웨어 정의 네트워크 통합 운영 및 관리 프레임워크)

  • Kim, Dongkyun;Gil, Joon-Min
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.557-564
    • /
    • 2013
  • An important research challenge about the traditional Internet environment is to enable open networking architecture on which end users are able to innovate the Internet based on the technologies of network programmability, virtualization, and federation. The SDN (Software Defined Network) technology that includes OpenFlow protocol specifications, is suggested as a major driver for the open networking architecture, and is closely coupled with the classical Internet (non-SDN). Therefore, it is very important to keep the integrated SDN and non-SDN network infrastructure reliable from the view point of network operators and engineers. Under this background, this paper proposes an operations and management framework for the combined software defined network environment across not only a single-domain network, but also multi-domain networks. The suggested framework is designed to allow SDN controllers and DvNOC systems to interact with each other to achieve sustainable end-to-end user-oriented SDN and non-SDN integrated network environment. Plus, the proposed scheme is designed to apply enhanced functionalities on DvNOC to support four major network failure scenarios over the combined network infrastructure, mainly derived from SDN controllers, SDN devices, and the connected network paths.

A Web-based Microcontroller Remote Laboratory for Sharing Resources (자원공유를 위한 웹기반 마이크로콘트롤러 원격 실험실)

  • Moon, Il-Hyeon;Han, Sae-Ron;Cho, Kwan-Sun;Ahn, Dal;Lim, Jong-Sik;Jeon, Heung-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1184-1192
    • /
    • 2008
  • There have been a large number of trials of the experimental education in engineering using virtual laboratories implemented in virtual space, namely on the Web. Although virtual education is regarded as an effective educational means that overcomes the limit of time and space and bring high teaming effects, the problem of lack of reality must be solved. The present study proposed and implemented a real-time remote laboratory as a solution for the problem of lack of reality in virtual education. The remote laboratory provides functions with which learners can perform experiments by remote-controlling circuits and equipment related to experiments and practices on the Web and gets data and image information, so through it learners can make realistic experiments at any time and in any place. The remote laboratory module based on Internet open sources such as JAVA Web start technology, FTP technology and Telnet technology in server-client environment can be implemented at low cost, and is effectively applicable to engineering experiment education in various areas related to real-time hardware control.