• 제목/요약/키워드: 개미군 최적화

검색결과 5건 처리시간 0.017초

개미 알고리즘을 융합한 적응형 유전알고리즘 (An Ant System Extrapolated Genetic Algorithm)

  • 김중항;이세영;장형수
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제32권8호
    • /
    • pp.399-410
    • /
    • 2005
  • 본 논문에서는 개미 군 집단 알고리즘을 융합한 새로운 적응형 유전 알고리즘을 제안하고, 제안된 알고리즘이 확률적으로 최적 해에 수렴함을 증명한다. 실험을 통해서, 제안된 알고리즘은 최적 해로의 수렴이 어려운 여러 가지 대표적인 함수들에 대하여 elitist 전략을 사용한 유전 알고리즘보다 더 빠른 속도로 최적 해에 수렴하고 한 군집 내의 모든 해들이 최적 해로 수렴하며 파라미터 값에 따라 새로운 탐색이나 현 상태로의 귀착의 정도를 조절할 수 있는 유연성 있는 알고리즘인 것을 보인다.

개미군 최적화 방법을 이용한 Location Area Planning (Location Area Planning Using Ant Colony Optimization)

  • 김성수;김형준;김기동
    • 경영과학
    • /
    • 제25권2호
    • /
    • pp.73-80
    • /
    • 2008
  • The location area planning is to assign cells to the location areas of a wireless communication network in an optimum manner. The two important cost components are cost of location update and cost of paging that are of conflicting in nature; i.e., minimizing the registration cost might increase the search cost. Hence, it is important to find a compromise between the location update and paging operations such that the cost of mobile terminal location tracking cost is a minimum. The complete mobile network is divided into location areas. Each location area consists of a group of cells. In fact this is shown to be an NP-complete problem in an earlier study. In this paper, we use an ant colony optimization method to obtain the best/optimal group of cells for a given a network.

개미군 최적화 방법을 적용한 무선 센서 네트워크에서의 클러스터링 최적 설계 (Clustering Optimal Design in Wireless Sensor Network using Ant Colony Optimization)

  • 김성수;최승현
    • 경영과학
    • /
    • 제26권3호
    • /
    • pp.55-65
    • /
    • 2009
  • The objective of this paper is to propose an ant colony optimization (ACO) for clustering design in wireless sensor network problem. This proposed ACO approach is designed to deal with the dynamics of the sensor nodes which can be adaptable to topological changes to any network graph in a time. Long communication distances between sensors and a sink in a sensor network can greatly consume the energy of sensors and reduce the lifetime of a network. We can greatly minimize the total communication distance while minimizing the number of cluster heads using proposed ACO. Simulation results show that our proposed method is very efficient to find the best solutions comparing to the optimal solution using CPLEX in 100, 200, and 400 node sensor networks.

ANN을 이용한 절삭성능의 예측과 ACO를 이용한 훈련 (Prediction of Machining Performance using ANN and Training using ACO)

  • 오수철
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.125-132
    • /
    • 2017
  • Generally, in machining operations, the required machining performance can be obtained by properly combining several machining parameters properly. In this research, we construct a simulation model, which that predicts the relationship between the input variables and output variables in the turning operation. Input variables necessary for the turning operation include cutting speed, feed, and depth of cut. Surface roughness and electrical current consumption are used as the output variables. To construct the simulation model, an Artificial Neural Network (ANN) is employed. With theIn ANN, training is necessary to find appropriate weights, and the Ant Colony Optimization (ACO) technique is used as a training tool. EspeciallyIn particular, for the continuous domain, ACOR is adopted and athe related algorithm is developed. Finally, the effects of the algorithm on the results are identified and analyzsed.

절삭가공의 Neural Network 모델을 위한 ACO 및 PSO의 응용 (Application of Ant Colony Optimization and Particle Swarm Optimization for Neural Network Model of Machining Process)

  • 오수철
    • 한국기계가공학회지
    • /
    • 제18권9호
    • /
    • pp.36-43
    • /
    • 2019
  • Turning, a main machining process, is a widespread process in metal cutting industries. Many researchers have investigated the effects of process parameters on the machining process. In the turning process, input variables including cutting speed, feed, and depth of cut are generally used. Surface roughness and electric current consumption are used as output variables in this study. We construct a simulation model for the turning process using a neural network, which predicts the output values based on input values. In the neural network, obtaining the appropriate set of weights, which is called training, is crucial. In general, back propagation (BP) is widely used for training. In this study, techniques such as ant colony optimization (ACO) and particle swarm optimization (PSO) as well as BP were used to obtain the weights in the neural network. Particularly, two combined techniques of ACO_BP and PSO_BP were utilized for training the neural network. Finally, the performances of the two techniques are compared with each other.