• 제목/요약/키워드: 개구형 크랙

검색결과 49건 처리시간 0.025초

탄성 지지된 밸브 배관계의 안정성에 미치는 크랙의 영향 (Crack Effects on Dynamic Stability of Elastically Restrained Valve-pipe System)

  • 허관도;손인수
    • 한국기계가공학회지
    • /
    • 제10권3호
    • /
    • pp.79-86
    • /
    • 2011
  • The dynamic instability and natural frequency of elastically restrained pipe conveying fluid with the attached mass and crack are investigated. The pipe system with a crack is modeled by using extended Hamilton's Principle with consideration of bending energy. The crack on the pipe system is represented by a local flexibility matrix and two undamaged beam segments are connected. In this paper, the influence of attached mass, its position and crack on the dynamic stability of a elastically restrained pipe system is presented. Also, the critical flow velocity for the flutter and divergence due to the variation in the position and stiffness of supported spring is studied. Finally, the critical flow velocities and stability maps of the pipe conveying fluid with the attached mass are obtained by the changing parameters.

크랙을 가진 L형 단면 보의 횡-비틀림 연성진동 해석 (Coupled Bending and Torsional Vibrations Analysis of Cracked L-shaped Beam)

  • 손인수;김창호;조정래
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.8-15
    • /
    • 2011
  • In this paper, the influence of a crack on the natural frequency of cracked cantilever L-shaped beam with coupled bending and torsional vibrations by analytically and experimentally is analyzed. The L-shaped beam with a crack is modeled by Hamilton's principle with consideration of bending and torsional energy. The two coupled governing differential equations are reduced to one sixth-order ordinary differential equation in terms of the flexural displacement. The crack is assumed to be in the first, second and third mode of fracture and to be always opened during the vibrations. The theoretical results are validated by a comparison with experimental measurements. The maximal difference between the theoretical results and experimental measurements of the natural frequency is less than 7.5% in the second vibration mode.

경사종동력을 받는 T형상 크랙 보의 안정성 해석 (Stability Analysis of Cracked Cantilever T-beams Subjected to Subtangential Follower Force)

  • 손익수;조정래
    • 한국기계가공학회지
    • /
    • 제9권3호
    • /
    • pp.49-55
    • /
    • 2010
  • In this paper, the stability of cracked cantilever T-beams subjected to subtangential follower force is investigated. Also, the effect of subtangential coefficient and crack on the natural frequency of T-beams is presented. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by the energy expressions using extended Hamilton's Principle. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The values of critical follower force and the stability maps of cantilever T-beams are obtained according to the subtangential coefficient and crack severity. The results of this study will contribute to the safety testing and the stability estimation of cracked T-beams subjected to follower force.

크랙과 이동질량이 존재하는 티모센코 보의 동특성 (Dynamic Behavior of Timoshenko Beam with Crack and Moving Mass)

  • 윤한익;최창수;손인수
    • 한국정밀공학회지
    • /
    • 제22권1호
    • /
    • pp.143-151
    • /
    • 2005
  • This paper study the effect of open cracks on the dynamic behavior of simply supported Timoshenko beam with a moving mass. The influences of the depth and the position of the crack in the beam have been studied on the dynamic behavior of the simply supported beam system by numerical method. Using Lagrange's equation derives the equation of motion. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modeled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces on the crack section and is derived by the applying fundamental fracture mechanics theory. As the depth of the crack is increased the mid-span deflection of the Timoshenko beam with the moving mass is increased. And the effects of depth and position of crack on dynamic behavior of simply supported beam with moving mass are discussed.

크랙과 이동질량을 가진 유체유동 외팔 파이프의 동특성에 관한 연구(I) - 진폭특성을 중심으로 - (A Study on Dynamic Behavior of Cantilever Pipe Conveying Fluid with Crack and Moving Mass (I) - Focused on the Amplitude Characteristics -)

  • 손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1295-1303
    • /
    • 2004
  • In this Paper a dynamic behavior of a cracked cantilever pipe conveying fluid with the moving mass is presented. It has the results focused on the response characteristics. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The cracked section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. When the fluid velocity is constant, the influences of the crack severity, the position of the crack, the moving mass and its velocity, and the coupling of these factors on the tip-displacement of the cantilever pipe are depicted.

크랙과 이동질량을 가진 유체유동 외팔 파이프의 동특성에 관한 연구(II)-진동수 변화를 중심으로- (A Study on Dynamic Behavior of Cantilever Pipe Conveying Fluid with Crack and Moving mass (II)-Focused on the Frequency Change-)

  • 손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1304-1313
    • /
    • 2004
  • In this paper a dynamic behavior of a cracked cantilever pipe conveying fluid with the moving mass is presented. It has the results focused on the frequency change. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. When the velocity of the moving mass is constant, the influences of the crack severity, the position of the crack, the moving mass, and the coupling of these factors on the frequencies of the cantilever pipe are depicted.

탄성기초 위에 놓인 크랙 외팔보의 동특성에 미치는 이동질량의 영향 (Effect of Moving Mass on Dynamic Behavior of Cracked Cantilever Beam on Elastic Foundations)

  • 안성진;손인수;윤한익
    • 한국소음진동공학회논문집
    • /
    • 제15권10호
    • /
    • pp.1195-1201
    • /
    • 2005
  • In this paper, the effect of a moving mass on dynamic behavior of the cracked cantilever beam on elastic foundations is presented. Based on the Euler-Bernoulli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. That is, the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory The crack is assumed to be in the first mode of fracture. As the depth of crack is increased, the tip displacement of the cantilever beam is Increased. When the depth of crack is constant, the frequency of a cracked beam is proportional to the spring stiffness.

크랙과 이동질량을 가진 티모센코 보의 진동특성 (Dynamic Behavior of a Timoshenko Beam with a Crack and Moving Masses)

  • 안성진;손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.799-804
    • /
    • 2004
  • In this paper a dynamic behavior of simply supported cracked simply supported beam with the moving masses is presented. Based on the Timoshenko beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics the of. And the crack is assumed to be in th first mode of fracture. As the depth of the crack and velocity of fluid are increased the mid-span deflection of the pipe conveying fluid with the moving mass is increased. As depth of the crack is increased, the effect that the velocity of the fluid on the mid-span deflection appeals more greatly.

  • PDF

경사종동력을 받는 크랙 외팔보의 안정성에 미치는 세장비의 영향 (Effects of Slenderness Ratio on Stability of Cracked Beams Subjected to Sub-tangential Follower Force)

  • 갈영민;안성진;윤한익;손인수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.961-966
    • /
    • 2008
  • In this paper, the purpose is to investigate the stability and variation of natural frequency of a Timoshenko cantilever beam subjected to Subtangential follower force and tip mass. In addition, an analysis of the flutter instability(flutter critical follower force) of a cantilever beam as slenderness ratio is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force is derived via Hamilton;s principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. Finally, the influence of the slenderness ratio and tip mass on the critical follower force and the natural frequency of a Timoshenko beam are investigated.

  • PDF

크랙과 이동질량을 가진 유체유동 단순지지 파이프의 동특성에 관한 연구 (A Study on Dynamic Behavior of Simply Supported Fluid Flow Pipe with Crack and Moving Mass)

  • 손인수;안성진;윤한익
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1625-1630
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of the transverse open cracks and the moving mass on the dynamic behavior of simply supported pipe conveying fluid. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass, the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. that is, the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow is increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The position of the crack is middle point of the pipe, the mid-span deflection of simply supported pipe presents maximum deflection.

  • PDF