• Title/Summary/Keyword: 강 거더 교량

Search Result 106, Processing Time 0.03 seconds

Fatigue Capacity Evaluation of the Girder-Abutment Connection for the Steel-Concrete Composite Rigid-Frame Bridge Integrated with PS Bar (PS 강봉으로 일체화된 강합성 라멘교의 거더-교대 접합부에 대한 피로 성능 평가)

  • Ahn, Young-Soo;Oh, Min-Ho;Chung, Jee-Seung;Lee, Sang-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.249-258
    • /
    • 2012
  • Integral and rigid frame bridges have advantages in bridge maintenance and structural efficiency by eliminating expansion joints and bridge supports. However, the detail of typical girder-abutment connection is rather complex and increases construction cost depending on construction detail. For the purpose of compensating disadvantages such as complexity and additional cost, a new type of bridge is proposed in this study, which improves the efficiency of construction by simplifying the construction detail of girder-abutment connection. The proposed bridge has the connection detail of steel girder and abutment integrated by prestressed PS bar installed in the connection. In this study, finite element analysis and fatigue load test are conducted to evaluate the fatigue capacity of the proposed girder-abutment connection. The results of the finite element analysis revealed that the possibility of the fatigue damage in the girder-abutment connection is very low. The results of the fatigue load test verified that the integrity of the girder and abutment connection is maintained after 2,000,000 cycles of fatigue loading.

Design Comparison of Composite Girder Bridges Designed by ASD and LRFD Methods (허용응력설계법 및 하중저항계수설계법에 의한 강합성 거더교 설계결과 비교)

  • Cho, Eun-Young;Shin, Dong-Ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.447-456
    • /
    • 2009
  • The design comparison and flexural reliability analysis of continuous span composite plate girder bridges are performed. The girders are designed by the methods of allowable stress design (ASD) and load and resistance factor design (LRFD). For the LRFD design, the design specification under development mainly by KBRC, based on AASHTO-LRFD specification in case of steel structures, is applied with the newly proposed design live load which has been developed by analyzing domestic traffic statistics from highways and local roads. For the ASD based design, the current KHBDC code with DB-24 and DL-24 live loads is used. The longest span length for the 3-span continuous bridges with span arrangement ratio of 4:5:4 is assumed to be from 30 m to 80 m. The amount of steel, performance ratios, and governing design factors for the sections designed by the ASD and LRFD methods are compared. In the reliability analysis for the flexural failure of the sections designed by two methods, the statistical properties on flexural resistance based on the yield strength statistics for over 16,000 domestic structural steel samples are applied.

An Analytical Study on Flexural Behaviors of CFT Girder (CFT 거더의 휨 거동 평가를 위한 해석적 연구)

  • Ko, Hee Jung;Moon, Jiho;Lee, Hak Eun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.35-35
    • /
    • 2011
  • CFT가 갖는 다양한 구조적 이점으로 인해, 축력이 지배적인 기둥 구조물에만 주로 적용되던 CFT 요소가 점차 거더에 적용되어 가고 있다. 그러나, 현재 CFT 요소에 대한 설계 기준은 축력이 지배적인 보-기둥 구조물에 대한 것으로 제한되어 있으며, 휨이 지배적인 보 구조물에 대한 현행 설계 기준의 적용성을 검토해야 할 필요가 있다. 현행 설계기준에서 제시하고 있는 CFT 요소의 극한 강도 평가방법은 소성응력분배법 및 변형률적합법으로 구분되어지며, 각 방법을 이용한 극한 강도의 평가결과를 기존 연구자들의 CFT 요소 휨 실험결과와 비교 분석하였다. 휨 강성 평가에 대한 타당성을 검증하기 위해 AISC에서 제시하는 휨 강성 평가식을 기존 실험 연구와 비교 검토하였으며, 아울러 압축력에 따라 휨 강성을 보정할 수 있도록 수정된 Roeder et al.의 제안식을 함께 검토하였다. 검토 결과, 강도 평가에 있어서는 설계 기준에서 제안하는 두 방법 모두 CFT 거더의 휨 강도를 적절히 평가할 수 있었으며, 강성 평가에 있어서는 설계 기준의 제안식이 휨 초기 강성을 적절히 평가하는 반면 사용 단계에서의 휨 강성은 Roeder et al.의 수정된 강성 평가식에 의해 적절히 평가할 수 있음을 확인하였다.

  • PDF

Analytical and Experimental Studies on Partially Composite of Steel-Plate Girder Bridges Using Slab Anchors (바닥판 앵커를 사용한 플레이트거더교의 부분합성에 관한 해석 및 실험 연구)

  • Han, Sang Yun;Park, Nam Hoi;Yoon, Ki Young;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.325-332
    • /
    • 2004
  • Cross sections of steel-plate girder bridges are divided into three cross sections of non-composite, partially composite, and fully composite sections, according to their composite characteristics. The Korean provision for the partially and fully composite sections specifies general usage of the stud of shear connectors, whereas the one for the non-composite section specifies empirical usage of slab anchors. However, the actual behavior of the cross sections of steel-plate girder bridges using slab anchors is close not to the non-composite action, but to the partially composite action. Therefore analytical and experimental studies on partial composites of steel-plate girder bridges using slab anchors are performed in this study. Intial stiffness of the slab anchor is obtained by the experimental study for the first time, and the composite characteristic of simple-span and two-span continuous steel-plate girder bridges is investigated by the finite element analyses for the second time. Based on the obtained initial stiffness, the reduction effect of tensile stresses in the concrete-slab on the intermediate support of the continuous bridge is also considered herein.

Steel Box Girder Bridge Models of Light Rail Transit with HR Plate (HR Plate의 경량전철 강박스거더교 적용모델)

  • Lee, Seong-Haeng;Yim, Chae-Sun;Hwang, Nak-Yuen;Jung, Kyoung-Sup
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.554-562
    • /
    • 2007
  • To increase the demand of HR Plate with thickness up to 22mm, it is necessary that HR Plate is applicable to full member in steel bridge including main girder. In this study, availabilities of the narrow steel box girder of light railway transit with HR Plate width as a main member are discussed. Computational analysis is performed in 15 bridge models of light railway transit with beam element and plate element. As an analysis results, three models in tight railway transit are presented. In conclusion, it is validated that HR Plate can be applying to narrow steel box girder in the light railway transit.

Reliability-Based Assessment of Structural Safety of Steel-Concrete Hybrid Cable-Stayed Bridge Erected by the FCM and FSM during Construction (FCM과 FSM공법에 의한 강-콘크리트 복합사장교의 신뢰성에 기초한 시공간 구조안전도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.515-526
    • /
    • 2007
  • In this study, the models and methods for the safety assessment of Steel-Concrete Hybrid Cable-Stayed Bridge, which consists of steel composite girder and concrete girder erected by the FCM(Free Cantilever Method) and FSM(Full Staging Method) are proposed for the assurance of structural safety and the prevention against bridge collapse during construction. By the structural reliability approach that reasonably considers the uncertainties associated with the resistance and the load effect, the resistance and the load distribution characteristics of Steel-Concrete Hybrid Cable-Stayed Bridgeare defined and the strength limit state equations of permanent structures and temporary structures during construction are suggested. An AFOSM algorithm and MCS technique are used for the reliability analysis of cables, pylons, girders, steel-concrete conjunction part and temporary bents. Also, component reliability analyses are performed at the construction stages based on the structural system model. To demonstrate their rationality and practicality, the proposed models and approaches are applied to a real bridge. The sensitivity analyses of main parameters are performed in order to identify the critical factors that control the safety of similar bridges. As a result, it may be stated that the proposed models could be implemented as a rational and practical approach for the safety assessment of Steel-Concrete Hybrid Cable-stayed bridges erected by FCM and FSM during construction.

Probability Based Resistance Model of Steel Girder Bridges Based on Field Testing (현장계측결과를 이용한 강거더교의 확률적 저항모델)

  • Eom, Jun-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.195-202
    • /
    • 2008
  • Underestimation of the capacity can have serious economic consequences, as deficient bridges must be posted, repaired or replaced. Accurate prediction of bridge behavior may allow for more bridges to remain in service with or without minor repairs. The presented research is focused on the reliability evaluation of the actual load carrying capacity of existing bridges based on the field testing. Reliability analysis is performed on 17 previously tested bridges. Bridges are first evaluated based on the code specified values and design resistance. However, after the field testing program, it is possible to apply the experimental results into the bridge reliability evaluation procedures. The girder distribution factors obtained from the tests are also applied in the reliability calculation. The results indicate that the reliability indices of selected bridges can be significantly increased due to the reduction of uncertainties without sacrificing the safety of structures, by including the result of field measurement data into calculation.

Design and Full Size Flexural Test of Spliced I-type Prestressed Concrete Bridge Girders Having Holes in the Web (분절형 복부 중공 프리스트레스트 콘크리트 교량 거더의 설계 및 실물크기 휨 실험 분석)

  • Han, Man Yop;Choi, Sokhwan;Jeon, Yong-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.235-249
    • /
    • 2011
  • A new form of I-type PSC bridge girder, which has hole in the web, is proposed in this paper. Three different concepts were combined and implemented in the design. First of all, a girder was precast at a manufacturing plant as divided pieces and assembled at the construction site using post-tensioning method, and the construction period at the site will be reduced dramatically. In this way, the quality of concrete can be assured at the manufacturing factory and concrete curing can be well controlled, and the spliced girder segments can be moved to the construction site without a transportation problem. Secondly, a numerous number of holes was made in the web of the girder. This reduces the self-weight of the girder. But more important thing related to the holes is that about half of the total anchorages can be moved from the girder ends into individual holes. The magnitude of negative moment developed at girder ends will be reduced. Also, since the longitudinal compressive stresses are reduced at ends, thick end diaphragm is not necessary. Thirdly, Prestressing force was introduced into the member through multiple stages. This concept of multi-stage prestressing method overcomes the prestressing force limit restrained by the allowable stresses at each loading stage, and maximizes the magnitude of applicable prestressing force. It makes the girder longer and shallower. Two 50 meter long full scale girders were fabricated and tested. One of them was non-spliced, or monolithic girder, made as one piece from the beginning, and the other one was assembled using post-tensioning method from five pieces of segments. It was found from the result that monolithic and spliced girder show similar load-deflection relationships and crack patterns. Girders satisfied specific girder design specification in flexural strength, deflection, and live load deflection control limit. Both spliced and monolithic holed web post-tensioned girders can be used to achieve span lengths of more than 50m with the girder height of 2 m.

A Study on Inelastic Behavior of Monosymmetric Singly Stepped Beam Subjected to Uniform Load (등분포 하중을 받는 일축대칭 일단 스텝보의 비탄성 거동 특성 고찰)

  • Park, Yi-Seul;Park, Jong-Sub
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.738-740
    • /
    • 2012
  • 최근 변단면 거더의 경제성을 고려하여 장경간 거더 교량과 강골조 구조물에 변단면보의 사용이 증가하고 있으며, 고강도 강의 등장으로 인해 변단면보의 정확한 좌굴 강도의 평가가 매우 중요시 되고 있다. 본 논문에서는 기존에 연구된 탄성 횡-비틀림 좌굴 강도에 관한 연구를 바탕으로하여 별로 비탄성 구간에 비지지 길이가 존재하는 일축대칭 I형 변단면보의 횡-비틀림 좌굴 강도 해석을 실시하였다. 해석에는 유한요소해석프로그램인 ABAQUS(2007)가 사용되었으며, MINITAB(2006)을 이용하여 간편한 설계식을 제안하고 있다. 일단 계단식 단면을 가지는 보에 대하여 고려하였으며, 플랜지 길이 방향 비, 너비방향 비, 두께의 비로 계단식 I형 보를 나타내었다. 집중 하중을 적용시켰으며 비선형 해석을 위해 잔류응력 및 초기변형과 재료비선형을 고려하였다. 본 연구 결과에서 제안된 식은 향후 다양한 하중이 작용하는 비탄성 횡-비틀림 좌굴 강도에 대한 연구에 많은 도움이 될 것이다.

  • PDF

Development of Displacement Estimation Technique for Bridges Located under Poor Measurement Circumstances (계측이 어려운 환경에 가설된 교량의 변위 추정 기술 개발)

  • Jeon, Junchang;Lee, Heehyun
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.755-764
    • /
    • 2016
  • In this paper, to verify the field application of a displacement estimation technique based on the relationship between displacement and strain, static and dynamic field load test are performed on three-span continuous real bridge structures. The superstructure types of the test bridges are IPC girder highway bridge and steel box girder AGT bridge. LVDTs and strain gauges are attached to them; then, the responses due to test vehicle are measured. To obtain the displacement-strain relationship of the test bridges, the bridges are modeled as grillage system with 6 DOFs for the purpose of structural analyses. Static and dynamic displacements, which are estimated using both the calculated displacement-strain relationship and the measured strain signal, agree well with the values measured by LVDT. This study demonstrates that the displacement estimation technique using the strain signal can be effectively applied to the displacement measurement of bridge structures that cross rivers/roads/railways or have high clearance.