• Title/Summary/Keyword: 강화 학습 에이전트

Search Result 131, Processing Time 0.037 seconds

Multi-Agent Reinforcement Learning Model based on Fuzzy Inference (퍼지 추론 기반의 멀티에이전트 강화학습 모델)

  • Lee, Bong-Keun;Chung, Jae-Du;Ryu, Keun-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.51-58
    • /
    • 2009
  • Reinforcement learning is a sub area of machine learning concerned with how an agent ought to take actions in an environment so as to maximize some notion of long-term reward. In the case of multi-agent, especially, which state space and action space gets very enormous in compared to single agent, so it needs to take most effective measure available select the action strategy for effective reinforcement learning. This paper proposes a multi-agent reinforcement learning model based on fuzzy inference system in order to improve learning collect speed and select an effective action in multi-agent. This paper verifies an effective action select strategy through evaluation tests based on Robocup Keepaway which is one of useful test-beds for multi-agent. Our proposed model can apply to evaluate efficiency of the various intelligent multi-agents and also can apply to strategy and tactics of robot soccer system.

The study on environmental adaptation and expansion of the intelligent agent (지능형 에이전트의 환경 적응성 및 확장성에 대한 연구)

  • 백혜정;박영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.136-138
    • /
    • 2003
  • 로봇이나 가상 캐릭터와 같은 지능형 에이전트가 자율적으로 살아가기 위해서는 주어진 환경을 인식하고, 그에 맞는 최적의 행동을 선택하는 능력을 가지고 있어야 한다. 본 논문은 이러한 지능형 에이전트를 구현하기 위하여, 외부 환경에 적응하면서 최적의 행동을 배우고 선택하는 방법을 연구하였다. 본 논문에서 제안한 방식은 강화 학습을 이용한 행동기반 학습 방법과 기호 학습을 이용한 인지 학습 방법을 통합한 방식으로 다음과 같은 특징을 가진다. 첫째, 외부 환경의 적응성을 수행하기 위하여 강화 학습을 이용하였으며. 이는 지능형 에이전트가 변화하는 환경에 대한 유연성을 가지도록 하였다. 둘째. 경험들에서 귀납적 기계학습과 연관 규칙을 이용하여 규칙을 추출하여 에이전트의 목적에 맞는 환경 요인을 학습함으로 주어진 환경에서 보다 빠르게, 확장된 환경에서 보다 효율적으로 행동을 선택을 하도록 하였다. 제안한 통합방식은 기존의 강화 학습만을 고려한 학습 알고리즘에 비하여 학습 속도를 향상 시킬수 있으며, 기호 학습만을 고려한 학습 알고리즘에 비하여 환경에 유연성을 가지고 행동을 적용할 수 있는 장점을 가진다.

  • PDF

(e-commerce Agents using Reinforcement Learning) (강화 학습을 이용한 전자 상거래 에이전트)

  • 윤지현;김일곤
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.579-586
    • /
    • 2003
  • Agents are well fitted to e-commerce applicable area because they pursuit an autonomy and interact with dynamic environment. In this paper we propose an e-commerce agents using reinforcement learning. We modify a reinforcement teaming algorithm for agents to have an intelligent feature and to make a transaction as practical business body in behalf of a person. To show the validity of this approach, we classify agents into buying agents and soiling agents, give characters of level according to the degree of learning and communication. Finally we implement an e-commerce framework and show the result. In this paper we show a design of e-commerce agents which is based on the proposed learning algorithm and present that the agents have enough possibility of doing a transaction in practical e-commerce.

Extended Q-Learning under Multiple Subtasks (복수의 부분작업을 처리할 수 있는 확정된 Q-Learning)

  • 오도훈;이현숙;오경환
    • Korean Journal of Cognitive Science
    • /
    • v.12 no.1_2
    • /
    • pp.25-34
    • /
    • 2001
  • 지식을 관리하는 것에 주력했던 기존의 인공지능 연구 방향은 동적으로 움직이는 외부 환경에서 적응할 수 있는 시스템 구축으로 변화하고 있다. 이러한 시스템의 기본 능력을 이루는 많은 학습방법 중에서 비교적 최근에 제시된 강화학습은 일반적인 사례에 적용하기 쉽고 동적인 환경에서 뛰어난 적응 능력을 보여주었다. 이런 장점을 바탕으로 강화학습은 에이전트 연구에 많이 사용되고 있다. 하지만, 현재까지 연구결과는 강화학습으로 구축된 에이전트로 해결할 수 있는 작업의 난이도에 한계가 있음을 보이고 있다. 특히, 복수의 부분 작업으로 구성되어 있는 작업을 처리할 경우에 기본의 강화학습 방법은 문제 해결에 한계를 보여주고 있다. 본 논문에서는 복수의 부분 작업으로 구성된 작업이 왜 처리하기 힘든가를 분석하고, 이런 문제를 처리할 수 있는 방안을 제안한다. 본 논문에서 제안하고 있는 EQ-Learning의 강화학습 방법의 대표적인 Q-Learning을 확장시켜 문제를 해결한다. 이 방법은 각각의 부분 작업 해결 방안을 학습시키고 그 학습 결과들의 적절한 순서를 찾아내 전체 작업을 해결한다. EQ-Learning의 타당성을 검증하기 위해 격자 공간에서 복수의 부분작업으로 구성된 미로 문제를 통하여 실험하였다.

  • PDF

Implementation of Reinforcement Learning Agent to Avoid Blocks in Block Avoidance Game (블록 피하기 게임에서 강화 학습을 이용한 블록 피하기 에이전트 구현)

  • Lee, Kyong-Ho;Kang, Byong-Seop
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.243-246
    • /
    • 2018
  • 본 논문에서는 2차원 공간상에서 상부에서 하부로 떨어지는 블록을 하부에서 피하는 게임에서 강화 학습에 사용되는 DQN 알고리즘을 이용하여 블록 피하기 에이전트를 구현하고 학습 통해 점점 더 높은 점수를 받는 모습을 확인하였다. 파이썬을 이용하여 게임을 구현한 후 텐서플로우를 이용하여 DQN를 이용한 에이전트를 구현하였다. 에이전트는 보상을 통한 학습을 통하여 점점 강화되도록 하였는데, 초기에는 무작위로 움직였으나, 환경으로부터 받는 보상으로 점점 더 능숙하게 피하는 모습을 관찰할 수 있었다. 본 구현에서는 4000번 정도의 게임 시행에서 아주 능숙하게 피하는 결과를 얻을 수 있었다.

  • PDF

Design and implementation of Robot Soccer Agent Based on Reinforcement Learning (강화 학습에 기초한 로봇 축구 에이전트의 설계 및 구현)

  • Kim, In-Cheol
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.139-146
    • /
    • 2002
  • The robot soccer simulation game is a dynamic multi-agent environment. In this paper we suggest a new reinforcement learning approach to each agent's dynamic positioning in such dynamic environment. Reinforcement learning is the machine learning in which an agent learns from indirect, delayed reward an optimal policy to choose sequences of actions that produce the greatest cumulative reward. Therefore the reinforcement learning is different from supervised learning in the sense that there is no presentation of input-output pairs as training examples. Furthermore, model-free reinforcement learning algorithms like Q-learning do not require defining or learning any models of the surrounding environment. Nevertheless these algorithms can learn the optimal policy if the agent can visit every state-action pair infinitely. However, the biggest problem of monolithic reinforcement learning is that its straightforward applications do not successfully scale up to more complex environments due to the intractable large space of states. In order to address this problem, we suggest Adaptive Mediation-based Modular Q-Learning (AMMQL) as an improvement of the existing Modular Q-Learning (MQL). While simple modular Q-learning combines the results from each learning module in a fixed way, AMMQL combines them in a more flexible way by assigning different weight to each module according to its contribution to rewards. Therefore in addition to resolving the problem of large state space effectively, AMMQL can show higher adaptability to environmental changes than pure MQL. In this paper we use the AMMQL algorithn as a learning method for dynamic positioning of the robot soccer agent, and implement a robot soccer agent system called Cogitoniks.

How the Learning Speed and Tendency of Reinforcement Learning Agents Change with Prior Knowledge (사전 지식에 의한 강화학습 에이전트의 학습 속도와 경향성 변화)

  • Kim, Jisoo;Lee, Eun Hun;Kim, Hyeoncheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.512-515
    • /
    • 2020
  • 학습 속도가 느린 강화학습을 범용적으로 활용할 수 있도록 연구가 활발하게 이루어지고 있다. 사전 지식을 제공해서 학습 속도를 높일 수 있지만, 잘못된 사전 지식을 제공했을 위험이 존재한다. 본 연구는 불확실하거나 잘못된 사전 지식이 학습에 어떤 영향을 미치는지 살펴본다. OpenAI Gym 라이브러리를 이용해서 만든 Gamble 환경, Cliff 환경, 그리고 Maze 환경에서 실험을 진행했다. 그 결과 사전 지식을 통해 에이전트의 행동에 경향성을 부여할 수 있다는 것을 확인했다. 또한, 경로탐색에 있어서 잘못된 사전 지식이 얼마나 학습을 방해하는지 알아보았다.

Reinforcement Learning based Dynamic Positioning of Robot Soccer Agents (강화학습에 기초한 로봇 축구 에이전트의 동적 위치 결정)

  • 권기덕;김인철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.55-57
    • /
    • 2001
  • 강화학습은 한 에이전트가 자신이 놓여진 환경으로부터의 보상을 최대화할 수 있는 최적의 행동 전략을 학습하는 것이다. 따라서 강화학습은 입력(상태)과 출력(행동)의 쌍으로 명확한 훈련 예들이 제공되는 교사 학습과는 다르다. 특히 Q-학습과 같은 비 모델 기반(model-free)의 강화학습은 사전에 환경에 대한 별다른 모델을 설정하거나 학습할 필요가 없으며 다양한 상태와 행동들을 충분히 자주 경험할 수만 있으면 최적의 행동전략에 도달할 수 있어 다양한 응용분야에 적용되고 있다. 하지만 실제 응용분야에서 Q-학습과 같은 강화학습이 겪는 최대의 문제는 큰 상태 공간을 갖는 문제의 경우에는 적절한 시간 내에 각 상태와 행동들에 대한 최적의 Q값에 수렴할 수 없어 효과를 거두기 어렵다는 점이다. 이런 문제점을 고려하여 본 논문에서는 로봇 축구 시뮬레이션 환경에서 각 선수 에이전트의 동적 위치 결정을 위해 효과적인 새로운 Q-학습 방법을 제안한다. 이 방법은 원래 문제의 상태공간을 몇 개의 작은 모듈들로 나누고 이들의 개별적인 Q-학습 결과를 단순히 결합하는 종래의 모듈화 Q-학습(Modular Q-Learning)을 개선하여, 보상에 끼친 각 모듈의 기여도에 따라 모듈들의 학습결과를 적응적으로 결합하는 방법이다. 이와 같은 적응적 중재에 기초한 모듈화 Q-학습법(Adaptive Mediation based Modular Q-Learning, AMMQL)은 종래의 모듈화 Q-학습법의 장점과 마찬가지로 큰 상태공간의 문제를 해결할 수 있을 뿐 아니라 보다 동적인 환경변화에 유연하게 적응하여 새로운 행동 전략을 학습할 수 있다는 장점을 추가로 가질 수 있다. 이러한 특성을 지닌 AMMQL 학습법은 로봇축구와 같이 끊임없이 실시간적으로 변화가 일어나는 다중 에이전트 환경에서 특히 높은 효과를 볼 수 있다. 본 논문에서는 AMMQL 학습방법의 개념을 소개하고, 로봇축구 에이전트의 동적 위치 결정을 위한 학습에 어떻게 이 학습방법을 적용할 수 있는지 세부 설계를 제시한다.

  • PDF

C-COMA: A Continual Reinforcement Learning Model for Dynamic Multiagent Environments (C-COMA: 동적 다중 에이전트 환경을 위한 지속적인 강화 학습 모델)

  • Jung, Kyueyeol;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.4
    • /
    • pp.143-152
    • /
    • 2021
  • It is very important to learn behavioral policies that allow multiple agents to work together organically for common goals in various real-world applications. In this multi-agent reinforcement learning (MARL) environment, most existing studies have adopted centralized training with decentralized execution (CTDE) methods as in effect standard frameworks. However, this multi-agent reinforcement learning method is difficult to effectively cope with in a dynamic environment in which new environmental changes that are not experienced during training time may constantly occur in real life situations. In order to effectively cope with this dynamic environment, this paper proposes a novel multi-agent reinforcement learning system, C-COMA. C-COMA is a continual learning model that assumes actual situations from the beginning and continuously learns the cooperative behavior policies of agents without dividing the training time and execution time of the agents separately. In this paper, we demonstrate the effectiveness and excellence of the proposed model C-COMA by implementing a dynamic mini-game based on Starcraft II, a representative real-time strategy game, and conducting various experiments using this environment.

Multagent Control Strategy Using Reinforcement Learning (강화학습을 이용한 다중 에이전트 제어 전략)

  • Lee, Hyong-Ill;Kim, Byung-Cheon
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.249-256
    • /
    • 2003
  • The most important problems in the multi-agent system are to accomplish a goal through the efficient coordination of several agents and to prevent collision with other agents. In this paper, we propose a new control strategy for succeeding the goal of the prey pursuit problem efficiently. Our control method uses reinforcement learning to control the multi-agent system and consider the distance as well as the space relationship between the agents in the state space of the prey pursuit problem.