• Title/Summary/Keyword: 강화노반의 두께

Search Result 17, Processing Time 0.036 seconds

Determination on the Reinforced Roadbed Thickness of Concrete Track at Embankment Section (흙쌓기 구간에서 콘크리트궤도 강화노반의 두께 결정에 관한 연구)

  • Lee, Il-Wha;Lee, Sung-Jin;Sin, Min-Ho;Hwang, Sun-Kun;Lee, Chang-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.835-843
    • /
    • 2009
  • Recently the more stable roadbed is required due to the high speed and design load. Therefore the reinforced roadbed was introduced as the solution. But the thickness and stiffness of reinforced roadbed in design code is being conservatively assessed by the foreign code without considering the domestic construction condition. In this paper, adequate Young's modulus, drain capacity, freezing depth, economical efficiency, bearing capacity, construction condition and 3-D finite element method were employed to determine the proper thickness of reinforced roadbed at the embankment section.

Evaluation on the Applicability of the Conventional Roadbed Stiffness for High Speed Concrete Track (일반철도 노반 강성조건에서의 고속철도용 콘크리트 궤도의 적용성 검토)

  • Lee, Jin Wook;Lee, Seong Hyeok;SaGong, Myung;Lyu, Tae Jin
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • Based on Korean railway design standards, the thicknesses of the reinforced roadbeds of conventional and high speed railways are different, and so too, for the size distribution of the ballast particles. Accordingly, considerable cost would be required to increase operating speeds of conventional lines, in particular related to changing from a ballasted track system to a ballastless one. In this study, applicability of a roadbed which supports conventional ballasted track, for use as a ballastless track for a high speed rail line was examined. A reinforced roadbed for a conventional railway is 20cm thick, and the type of material used for a conventional reinforced roadbed is M-40 (crushed gravel for road embankments). A dynamics test was conducted to evaluate the occurrence of the permanent settlement of the track substructure. These results suggest that, without changes to the track substructure, an operational speed of 400km/h is feasible with a ballastless track. This result; however, is from laboratory experiments. Further studies, such as numerical analyses or field validation, are required.

Settlement Characteristics of the Reinforced Railroad Roadbed with Crushed Stones Under a Simulated Train Loading (모사 열차하중 재하에 따른 쇄석강화노반의 침하특성)

  • Hwang, Seon-Keun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.5-13
    • /
    • 2004
  • Conventional railroad roadbeds constructed with soils can easily deteriorate with time due to the increase of repeated traffic loading, increase of train speed, built-up of ground water on the roadbed and decrease of permeability in the roadbed layer, etc. In this study, performance of reinforced railroad roadbeds with the crushed stones was investigated through the real scale roadbed tests and numerical analysis. It was found that the reinforced roadbed with crushed stone had less elastic and plastic vertical displacement(settlement) than general soil roadbed regardless of the number of loading cycles. It was also found through the actual testing that for the roadbed with the same thickness, the displacement of reinforced roadbed decreases with the increase of subgrade reaction modulus. The settlement of reinforced roadbed with the same subgrade reaction modulus also decreases with the increase of thickness of the reinforced roadbed. However, the subgrade reaction modulus is a more important factor to the total plastic displacement of the track than the thickness of the crushed stone roadbed.

Optimal Section of Ballasted Asphalt Track Considering Design Lifetime and Economic Feasibility (설계수명 및 경제성을 고려한 유도상 아스팔트 궤도의 최적 단면 산정)

  • Lee, Seonghyeok;Lee, Jinwook;Lee, Hyunmin
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.241-251
    • /
    • 2015
  • Compared with ballasted track (BT), ballasted asphalt track (BAT) has been increasingly adopted in many countries due to its more greatly reduced reinforced roadbed thickness and smaller cumulative plastic deformation, and its advantages in terms of maintenance. In this respect, the authors' previous research includes analysis of BAT sections that show performance similar to that of BT sections of the present specifications; reliability verification of the analysis results through real-sized static and dynamic train-load tests were performed. Based on previous research, this paper estimates the track lifetime using the strain of the lower roadbed according to reinforced roadbed thickness; using probabilistic LCC analysis, this paper presents a BAT section that satisfies the design lifetime and that has performance similar to or higher than that of BT.

Prediction of Cumulative Plastic Displacement in the Concrete Track Roadbed Caused by Cyclic Loading (반복하중에 의한 콘크리트 궤도 노반의 누적 소성 변위 예측)

  • Won, Sang-Soo;Lee, Jin-Wook;Lee, Seong-Hyeok;Jung, Young-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • Plastic deformation of roadbed influences the stability and maintenance of concrete slab track. Long-term plastic deformation in a railway roadbed is generated primarily due to accumulated inelastic strains caused by repeated passing of trains. Prediction of cumulative plastic deformation is important in cost-effective maintenance of railway tracks as well as for the safe operation of trains. In this study, the vertical displacements in railway roadbeds with different thicknesses of reinforced roadbed were computed. Parameters of the power model for cumulative plastic strain were calibrated by using the data from triaxial tests and full-scale loading tests. Results of three-dimensional finite element analyses of standard roadbed sections provide us with design guidelines for the selection of the thickness of reinforced roadbed.

Behavior Characteristics of Ballasted Track on Asphalt Roadbed Using Real Scale Test (실대형 실험을 통한 아스팔트 노반상 자갈궤도의 거동 특성)

  • Lee, Seonghyeok;Lee, Jinwook;Lee, Hyunmin
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.252-260
    • /
    • 2015
  • Ballasted track on an asphalt roadbed can be beneficial for its various effects such as (i) decreasing of roadbed thickness by dispersing train load; (ii) prevention of both strength reduction and weakening in roadbed system by preventing rainwater penetration; and (iii) reducing maintenance cost by preventing roadbed mud-pumping and frostbite. With these beneficial effects, ballasted track on asphalt roadbed has been widely used in Europe and Japan, and relevant research for applying such ballasted track on asphalt roadbed systems in Korea is ongoing. In this study, full-scale static and dynamic train load tests were performed to compare the performance of ballasted track on asphalt roadbed and ballasted track. The optimum thickness levels of asphalt and reinforced roadbeds, corresponding to the design criteria for reinforced roadbed of high-speed railway, was estimated using the FEM program ABAQUS. Test results show that the earth pressure on reinforced roadbed of ballasted track on the asphalt roadbed was relatively low compared with that of simple ballasted track. The elastic and plastic displacements of simple ballasted track on the asphalt roadbed were also lower than those of ballasted track. These test results may indicate that the use of ballasted track on asphalt roadbed is an advantageous system in view of long-term maintenance.

Development of Permanent Deformation Prediction Model for Trackbed Foundation Materials based on Shear Strength Parameters (강화노반 쇄석재료의 전단강도특성을 고려한 영구변형예측모델 개발)

  • Lim, Yujin;Hwang, Jungkyu;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.623-630
    • /
    • 2012
  • Formation used as trackbed foundation for providing vertical bearing capacity onto rail foundation are composed of crushed stones usually with certain type of grain size distribution. Permanent deformation in trackbed foundation can be generated by increasing number of load repetition due to train traffic increases, causing track irregularity. In this study, a specially prepared trackbed foundation materials (M-40) used in Korea has been tested using a large repetitive triaxial compression apparatus in order to understand resilient and permanent deformation characteristics of the material. From these test results, resilient and permanent deformation characteristic are analyzed so that a permanent deformation model is developed which can consider number of load repetition N, confining stress (${\sigma}_3$), shear stress ratio(${\tau}/{\tau}_f$) and stiffness of the material.

Estimation of Reinforced Roadbed Thickness based on Experimental Equation (노반재료의 소성침하 예측식을 이용한 강화노반 두께 산정)

  • Shin, Eun-Chul;Yang, Hee-Saeng;Choi, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1747-1755
    • /
    • 2008
  • Design of the reinforced roadbed thickness is concerned with safe operation of trains at specified levels of speed, axle load and tonnage. There are two methods for evaluating it. One is using an experimental equation and the other is using elastic theory with considering axle load, material properties of subsoils and allowable elastic settlement. Multi-layered theory is used to determine reinforced roadbed thickness by RTRI. Although their reinforced roadbed thickness is designed with an objective of achieving a minimum standard 2.5mm of settlement on the subgrade surface, it is hardly applied to real design. Li(1994) has suggested the experimental model which design approach is to limit plastic strain and deformations for the design period. It is worth due to adopting soil equivalent number of repeated load application. Moreover, it has been a more advanced method than existing design methods because including resilient modulus of subsoil beneath track, soil deviator stress caused by train axle loads and MGT. In this paper, it is analyzed under domestic track conditions to estimate the reinforced roadbed thickness with different soil types.

  • PDF

Study on the Reinforcing Subgrade Depths of Highspeed and Conventional Railroads (일반철도와 고속철도의 강화노반두께에 관한 연구)

  • Kim Dae-Sang;Lee Su-Hyung;Choi Chan-Yong;Hwang Seon-Keun
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.128-136
    • /
    • 2005
  • The reinforcing subgrade, which first introduced Korea for the highspeed subgrade construction, has the many advantages to maintain the quality of ballast track as well as to prevent the softening of subgrade by mud-pumping. It causes the subgrade soil to spout into the ballast on many lines. Therefore, the application of reinforcing subgrade will be expected to increase in the future. This paper introduces the reinforcing subgrade as a maintenance-free technology f3r the railroad operation and the method f3r the determination of reinforcing subgrade depth. The criteria on reinforcing subgrade depths of highspeed and conventional railroad were verified from the calculation results based on an elastic analysis method.