• Title/Summary/Keyword: 강합성

Search Result 930, Processing Time 0.028 seconds

A new type of steel-concrete composite bridge: S.B girder (신형식 강-콘크리트 합성교량: S.B 합성거더)

  • Sim, Jun-Gi;Zi, Goang-Seup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.41-42
    • /
    • 2010
  • Newly developed steel-concrete composite girder bridge that comprise a steel girder with a steel box top slab filled with concrete. Compressive strength and bucking resistance of that are high because the concrete was confined to steel. that is economical form because the top of the section substituted partly steel for concrete. This paper provides that conspicuous characteristics of a new type of steel-concrete composite bridge.

  • PDF

An Experimental Study on Wind Aerodynamic Improvement of Steel Composite Cable Stayed Bridge having π-shaped Girder (π형 주형을 가진 강합성 사장교의 공기역학적 제진방법에 대한 실험적 연구)

  • Chang, Dong Il;Min, In Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.801-811
    • /
    • 1998
  • In this paper, aerodynamic properties and improvements of the ${\pi}-shaped$ stiffening girder is studied by wind tunnel tests in steel composite cable stayed bridge. As an improvement device, fairing, extension, post and flap is tested. and the best improved section is selected and estimated on angles of attack, damping ratios and turbulent flows. It is shown that the selected fairing is effective to improve the aerodynamic stability. And this study can be utilized as a database of wind-resistant methodology of steel composite cable stayed bridge.

  • PDF

An Experimental Study on Bending Behaviour of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 휨거동에 관한 실험적 연구)

  • Shin, Hyun Seop;Lee, Chin Hyung;Park, Ki Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.68-77
    • /
    • 2012
  • The joint of existing steel grid composite deck is composed of lap splice of reinforcing bar with end hooks and field-placed concrete. In this study, bending tests of deck joint composed of concrete shear key and high tension bolts are carried out for the design variable, concrete shear key strengthened with steel plate or not, and test results are compared with flexural performance of the existing deck joint. Test results showed that the mechanical deck joint has about 30% ~ 60% more ultimate bending strength than the existing joint. According to analysis results of moment-curvature relationship, the initial bending stiffness of the existing deck joint is some higher than that of mechanical joint. But, after crack failure the structural performance of the existing deck joint is rapidly reduced. Furthermore, the deck joint with the strengthened shear key with steel plate has more bending moment capacity than the deck joint without strengthening. And strengthening of shear key has positive influence on the increase of bending stiffness.

Probabilistic Risk Assessment of a Steel Composite Hybrid Cable-Stayed Bridge Based on the Optimal Reliabilities (최적신뢰성에 의한 강합성 복합사장교의 확률적 위험도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.395-402
    • /
    • 2007
  • Probabilistic risk assessment was conducted on a hybrid cable-stayed bridge consisting of a steel-composite plate girder and a concrete girder with a long span, designed using the working stress design and strength design methods. The component reliabilities of the bridge's cables, pylons, girders, and steel-concrete conjunction were evaluated using the AFOSM(Advanced First Order Second Moment) algorithm and the simulation technique at the critical sections, based on the maximum axial force, shear, and positive and negative moments of the selected sections. For the analysis of system reliability, the hybrid cable-stayed bridge consisting of cables, pylons, and plate girders was modeled into combined failure modes, and for system reliability, the probabilities of failure and reliability index of the structural system were evaluated. Based on the results of this study, the critical failure modes of the hybrid cable-stayed bridge based on the bridge's structural characteristics are suggested, and the efficiency of the partial ETA technique for use in the risk assessment method was confirmed.

Revaluation of Nominal Flexural Strength of Composite Girders in Positive Bending Region (정모멘트부 강합성거더의 공칭휨강도 재평가)

  • Youn, Seok Goo
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.165-178
    • /
    • 2013
  • This paper presents a research work for the evaluation of the nominal flexural strength of composite girders in positive bending region. Current predicting equations for the nominal flexural strength of composite girders in the 2012 version of the Korea Bridge Design Codes based on Limit State Design Method are able to apply for the composite girders with conventional structural steels. For applying composite girders with high yield strength steels of HSB800 as well as HSB600, there is a need for improving the current predicting equations. In order to investigate the nominal flexural strength of composite girders, previous research works are carefully reviewed and parametric study using a moment-curvature analysis program is conducted to evaluate the ultimate moment capacity and the ductility of a wide range of composite girders. Based on the results of the parametric study, less conservative nominal flexural strength design equations are proposed for conventional composite girders. In addition, new design equations for predicting the nominal flexural strength of composite girders with HSB600 and HSB800 high-performance steels are provided.

Structure Behavior Evaluation of Beams composited with Steel and Reinforced Concrete (철근콘크리트와 강을 합성한 복합 단면보의 구조거동평가)

  • Kim, In Seok;Kim, Hak Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.665-673
    • /
    • 2008
  • The composite structures of steel and reinforced concrete, which have been widely used in large-scale concrete structures, werestudied to investigate the cause of unexpected cracks and to verify the composite actions between the two materials. Vertical stiffeners between flanges, studs and dowel bars, stirrups, and concrete strength were chosen as experimental variables in afour-point loading test. The results showed that the vertical stiffener prevented not only the local web buckling, but also bond failures between steel and concrete. It increased the flexural resistance (fracture loads) due to the composite action of two materials, compared withthose of any experimental variable. However, the composite behavior of steel reinforced concrete beam was not affected seriously by additional studs, dowel bars, stirrups, and concrete strength.

Evaluation of the Bending Performance of a Modified Steel Grid Composite Deck Joint (격자형 강합성 바닥판의 수정된 이음부에 대한 휨성능 평가)

  • Shin, Hyun-Seop;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.38-47
    • /
    • 2013
  • For the joint connection of the precast steel grid composite decks, the prefabricated joint which is composed of concrete shear key and high-tension bolts was already proposed. In this study, for the purpose of increasing the bending stiffness and bending strength of the proposed prefabricated joint section details of the proposed joint are modified, and through experimental tests the bending performance, such as stiffness and strength of a modified joint, is compared with those of the proposed joint. Test and analysis results show that the shear cracks in the concrete shear key are clearly reduced by the strengthening of the shear key using shear studs and additional rebars. According to analysis results of the moment-curvature relationship, bending stiffness of the modified joint is about 47% greater than the stiffness of the proposed joint. Furthermore, the modified joint has about 32% greater bending strength than the proposed joint. Compared to specimens without the joint the modified joint has same or slightly higher bending strength, but about 37% lower bending stiffness.

Redundancy of the Composite Twin Steel Plate Girder Bridgeaccording to the Dimension and Spacing of Cross Beams (강합성 플레이트 2-거더교의 가로보 제원 및 설치 간격에 따른 여유도 평가)

  • Park, Yong Myung;Joe, Woom Do Ji;Baek, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.137-146
    • /
    • 2006
  • In this paper, a numerical study on the evaluation of the redundancy according to the dimension and spacing of cross beams in the composite twin steel plate girder bridges that are generally recognized as a non-redundant load path structures, has been performed. Specifically, a two-lane three-span continuous (40+50+40m) bridge with I-section cross beams which serve as cross bracing, and without a lateral bracing were considered. The material and geometric nonlinear analyses were conducted to evaluate the ultimate loading capacity of the intact and damaged bridge in which one of the two girders is seriously fractured. Through the numerical analyses, it was recognized that there is little difference in redundancy according to the variation of the dimension and spacing of the cross beams for both intact and damaged bridges.