• Title/Summary/Keyword: 강우침투해석

Search Result 203, Processing Time 0.039 seconds

The Seepage Behaviour and Stability of Extension Embankment by Unsteady State Seepage (비정상침투에 의한 증축제체의 침투거동과 안정성)

  • Shin, Bang-Woong;Bae, Woo-Seok;Lee, Jong-Kyu;Kang, Jong-Beom
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.57-65
    • /
    • 2001
  • In this study, the seepage behavior and the stability of the extension embankment were estimated for three cases the permeability coefficient of an extension part and the rising velocity due to the rainfall of flood period. In parallel flow condition, the unstability of the slope due to embankment erosion was examined by analyzing the variation of seepage line by the seepage modeling tests and FEM analysis, and the stability of the embankment slope accompanied by the sudden rise of the water level after the flood. The seepage behavior of extension embankment indicates that the larger permeability of the extension part the longer initial seepage distance, and the exit point from embankment slope is gradually increased, and then shows unstable seepage behavior that occurs a partial collapse as safety factor decreases with time. It is because of the increment of exit points due to variation of seepage line and rising velocities of water level. Also, the collapse aspect of embankment slope shows that the increment rising velocities of water level causes the increment collapse height and depth.

  • PDF

Stability Analysis of Geocell Reinforced Slope During Rainfall (강우 시 지오셀 보강 사면의 안정성 평가에 관한 연구)

  • Shin, Eun-Chul;Kim, Jang-Ill
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.33-41
    • /
    • 2017
  • In this study, the increment effect of safety factor according to increasing of horizontal permeability coefficient is analyzed when geocell is installed on the slope for protection. To evaluate the horizontal permeability and reinforcement effect, the laboratory tests such horizontal permeability test were conducted. According to the laboratory test results, as the porosity rate of geocell increases, the coefficient of horizontal permeability is also increased. And also, regardless of the different types of filled materials, the coefficient of horizontal permeability is improved in a geocell reinforced ground compare with the non-reinforced ground. Laboratory test results and the rainfall intensity were applied to the numerical modeling of slope for seepage analysis and stability analysis of slope by using Soilworks, numerical analysis program. As a result of the slope stability analysis, it is confirmed that the installed geocell on the slope facilitates the drainage of water on the surface of slope. Hence, the ground water elevation is suppressed. Therefore, the safety factor of the slope is increased by the increasing of the internal friction angle, apparent cohesion, and coefficient of horizontal permeability by reinforcing the slope with geocell.

A Case Study in a Rainfall induced Failure of Geosynthetics-Reinforced Segmental Retaining Wall (강우로 인한 보강토옹벽의 붕괴사례 연구)

  • Yoo, Chung-Sik;Jung, Hye-Young;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.1
    • /
    • pp.17-25
    • /
    • 2005
  • This paper presents a case history of a geosynthetics-reinforced segmental retaining wall, which collapsed during a sever rainfall immediately after the completion of the wall construction. In an attempt to identify possible causes for the collapse, a comprehensive investigation was carried out including physical and strength tests on the backfill, stability analyses on the as-built design based on the current design approaches, and slope stability analyses with pore pressure consideration. The investigation revealed that the inappropriate as-built design and the bad-quality backfill were mainly responsible for the collapse. This paper describes the site condition including wall design, details of the results of investigation and finally, lessons learned. Practical significance of the findings from this study is also discussed.

  • PDF

Immersive urban flood simulation using virtual reality simulation environment (가상현실 모의환경을 활용한 몰입형 도시 침수 모의)

  • Sooncheol Hwang;Sangyoung Son
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.110-110
    • /
    • 2023
  • 기후변화, 도시화 등 다양한 요인에 의하여 도시 침수 위험성은 더욱 커지고 있다. 높은 인구밀도와 더불어 학교, 병원 등 인프라가 집중된 도시지역의 경우 대규모 홍수가 발생할 경우 수많은 인적, 경제적 피해로 이어지게 된다. 도시지역 내 침수 위험성을 최소화하기 위해 정확하고 빠른 도시침수모형의 개발과 더불어 사전에 이를 최소화하기 위한 방재교육의 중요성이 더욱 강조되고 있다. 가상현실 (Virtual Reality, VR) 기술은 높은 몰입감을 통해 사용자의 자발적 참여를 유도하여 기존의 교육매체 대비 높은 교육적 효과를 보이고 있다. 특히 침수 등 인명피해 위험성을 내재한 재해에의 VR 적용은 위험성을 동반하지 않아 더욱 효과적이다. 종래의 VR 기반 침수 방재교육은 침수의 동수역학적 거동과 대상 지역의 지리적 특성을 적절히 고려하지 못하여 방재교육에는 효과적이나 방재시스템으로의 활용엔 한계가 있다. 본 연구는 몰입형 파랑해석모형인 Celeris Base를 토대로 몰입형 도시 침수 수치모형을 개발하였다. Unity3D로 개발된 Celeris Base는 가상현실 장비인 HMD (Head Mounted Display) 기술을 이용하여 실시간 모의결과를 360도 가상현실 공간 내에 가시화할 수 있다. 도시지역 내 강우에 의한 침수를 모의하기 위해 연속방정식 내에 강우, 침투 항을 고려하였다. 침투모형으로는 도시지역 내 침수모의에 일반적으로 사용되는 NRCS-CN 방법을 사용하였다. 본 연구는 개발모형을 이용하여 2022년 8월 발생한 집중호우에 의한 강남역 일대 침수 사상을 수치적으로 재현하고, 이를 가상현실 모의환경 내에 가시화하였다. 모의결과는 집중호우 발생 시 지형적 특성에 따라 강남역과 역삼역 인근에서 집중적으로 침수피해가 발생하였음을 확인하였다.

  • PDF

Water cycle evaluation of Bioretention based on hydrologic model (수문모형을 기반으로 한 식생저류지 물순환 평가)

  • Kim, Jae Moon;Baek, Jong Seok;Jang, Young Su;Shin, Hyun Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.290-290
    • /
    • 2021
  • 급격한 도시화 및 기후변화로 인한 물순환체계가 왜곡됨에 따라 자연수재해 피해가 급증하고 있어 대응방안으로 저영향개발(Low Impact Development, LID) 기법이 대두되고 있다. LID 요소 기술 중 하나인 식생저류지는 도시 유역내에서 발생하는 유출수를 저류 및 침투하여 우수유출수와 비점오염원으로 인한 오염저감 효과를 지니고 있는 LID 요소이다. 본 연구에서는 식생저류지의 우수유출수의 정량적 저감효과를 분석하기 위해 수문해석 프로그램인 K-LIDM(Korea Low Impact Development Model)을 이용하여 유역 내 식생저류지 배열과 저류용량에 따른 유출저감 효과를 분석하였다. 강우시나리오는 부산지점의 10년, 30년 발생빈도에 대하여 60분, 120분, 180분 확률강우시나리오를 선정하여 적용하였다. 모델링 분석결과 식생저류지 배치에 따라 5 ~ 15 % 이상의 유출저감효과가 산정되었으며, 식생저류지 저류용량에 따라 20 % 이상의 유출저감 효과가 산정되었다. 첨두유출 도달시간은 1.13 ~ 1.86배를 지연하는 결과가 산정되었다. 결과를 통해 식생저류지의 배열과 저류용량에 따라 유출량 저감효과와 첨두유출 도달시간에 영향을 미침을 알 수 있었다. 추후에 다른 매개변수인 식생저류지의 저류깊이, 지반의 침투능 및 유출부의 직경 등 여러 매개변수들을 고려한 연구를 수행한다면 식생저류지의 정량적 물순환 평가가 수행될것으로 사료된다.

  • PDF

Runoff Analysis Considering the Distribution of Concentration Time and Slope Length for the Mountainous Small Watershed (사면(斜面)의 특성(特性)과 홍수도달시간(洪水到達時間)의 분포특성(分布特性)을 고려한 산지소유역(山地小流域)의 유출해석(流出解析))

  • Lee, Won Hwan;Cho, Hong Je
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.59-70
    • /
    • 1983
  • In this paper, it deals with runoff analysis in a mountainous watershed where the concentration time of the river is much Shorter than that of slopes. The momentum and continuity equation are used as the basic expressions and they are solved by the kinematic wave theory. By the introducing the distribution of concentration time, representing the characteristics of topographical and hydraulic factors, into a solution. A response function is derived. Using the optimization technique (simplex Method), the response functions derived in this paper are tested by comparing the observed and the estimated values, and shows promising.

  • PDF

A Particle Tracking Method for the Lagrangian-Eulerian Finite Element Method in 3-D Subsurface System (3차원 지표하 시스템에서 Lagrangian-Eulerian 유한요소법에 대한 입자추적 알고리즘)

  • Lee, Jae-Young;Kang, Mee-A
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.205-215
    • /
    • 2009
  • The conventional numerical models to analyze flow in subsurface porous media under the transient state usually generate numerical oscillation and unstability due to local flux domain for critical cases such as infiltration into initially dry soil during rainfall period. In this case, it is required refined mesh and small time step, but it decrease efficiency of computation. In this study, numerical unstability in discontinuity domain is removed by applying particle tracking algorithm to simulate unsteady subsurface flow with inflow boundary condition. Finally the hybrid LE FEM improving numerical stability is proposed. The hypothetical domains with unsteady uniform and nonuniform flow field were used to demonstrated algorithm verification. In comparison with analytic solution, we obtained reasonable results and conducted simulation of hypothetical 3-D recharge/pumping area. The proposed algorithm can simulate saturated/unsaturated porous media with more practical problems and will greatly contribute to accuracy and stability of numerical computation.

Slope Stability Assessment on a Landslide Risk Area in Ulsan During Rainfall (울산 산사태 위험지역의 강우 침투 안정성 평가)

  • Kim, Jinwook;Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.6
    • /
    • pp.27-40
    • /
    • 2016
  • Conventional warning criteria for landslides due to rainfall in broad regions have limitations, because they did not have proper reflection of topography, forest physiognomy, and unsaturated soil properties, et al. This study suggested a new stability model for unsaturated slope analyses during rainfall, considering rainfall pattern, geomorphological characteristics (slope angle, soil depth), engineering properties of unsaturated soils, and tree surcharge and root reinforcement. Stability analysis not considering root reinforcement and tree surcharge tends to over-predict a factor of safety in unsaturated slopes. Developed slope stability model was used to build database on the factor of safety in unsaturated slopes during rainfall, and it was integrated with GIS to do quantitative risk analysis in landslide risk areas specified in Ulju. Landslide risk areas were located at downstream of the point with sudden drop in safety factor, as well as at regions with low safety factor during rainfall.

Characterization on the Relationships among Rainfall Intensity, Slope Angle and Pore Water Pressure by a Flume Test : in Case of Gneissic Weathered Soil (산사태 모형실험을 통한 강우강도 및 사면경사 변화와 간극수압과의 관계 연구 : 편마암 풍화토를 대상으로)

  • Chae, Byung-Gon;Lee, Seong-Ho;Song, Young-Suk;Cho, Yong-Chan;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.57-64
    • /
    • 2007
  • This study was conducted to characterize on the relationships among rainfall intensity, slope angle and pore water pressure in the gneissic weathered soil by landslide laboratory flume tests. Under the several test conditions dependent on rainfall intensity and slope angle, the authors measured pore water pressure, failure and displacement of slope on a regular time interval. According to the test results, the increasing times of pore water pressures have direct proportional trends to the rainfall intensity. The pore water pressure was increased earlier at the head part of slope than the toe part. Compared with the test results of Chae et al(2006), the results of this study explain that the seepage velocity in the gneissic weathered soil is slower than that in the standard sands. It results in faster and ear-lier increase of pore water pressure at the head part of slope due to slow flow of water in the gneissic weathered soil. In case of the relationship between slope angle and pore water pressure, gentle slope angle has faster increase of pore water pressure than steeper slope angle. It is also thought to be due to slow seepage velocity and flow velocity in the gneissic weathered soil.

Runoff Analysis for Weak Rainfall Event in Urban Area Using High-ResolutionSatellite Imagery (고해상도 위성영상을 이용한 도시유역의 소강우 유출해석)

  • Kim, Jin-Young;An, Kyoung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.6
    • /
    • pp.439-446
    • /
    • 2011
  • In this research, enhanced land-cover classification methods using high-resolution satellite image (HRSI) and GIS in terms of practicality and accuracy was proposed. It aims for understanding non-point pollutant origin/loading, assessment the efficiency of rainfall storage/infiltration facilities and sounds water-environment management. The result of applying enhanced land-cover classification methods to the urban region verifies that roof and road area are including various vegetations such as roof garden, flower bed in the median strip and street tree. This accounts for 3% of total study area, and more importantly it was counted as impervious area by GIS alone or conventional indoor work. The feasibility of the method was assessed by applying to rainfall-runoff analysis for three weak rainfall in the range of 7.1-10.5 mm events in 2000, Chiba, Japan. A good agreement between simulated and observed runoff hydrograph was obtained. In comparison, the hydrograph simulated with land-use parameters by the detailed land-use information of 10m grid had an error between 31%~71%, while enhanced method showed 4% to 29%, and showed the improvement particularly for reproducing observed peak and recession flow rate of hydrograph in weak rainfall condition.