DOI QR코드

DOI QR Code

Runoff Analysis for Weak Rainfall Event in Urban Area Using High-ResolutionSatellite Imagery

고해상도 위성영상을 이용한 도시유역의 소강우 유출해석

  • Kim, Jin-Young (Department of Urban Engineering, The University of Tokyo) ;
  • An, Kyoung-Jin (Department of Urban Engineering, The University of Tokyo)
  • 김진영 (도쿄대학교 도시공학과) ;
  • 안경진 (도쿄대학교 도시공학과)
  • Received : 2010.10.22
  • Accepted : 2011.06.26
  • Published : 2011.06.30

Abstract

In this research, enhanced land-cover classification methods using high-resolution satellite image (HRSI) and GIS in terms of practicality and accuracy was proposed. It aims for understanding non-point pollutant origin/loading, assessment the efficiency of rainfall storage/infiltration facilities and sounds water-environment management. The result of applying enhanced land-cover classification methods to the urban region verifies that roof and road area are including various vegetations such as roof garden, flower bed in the median strip and street tree. This accounts for 3% of total study area, and more importantly it was counted as impervious area by GIS alone or conventional indoor work. The feasibility of the method was assessed by applying to rainfall-runoff analysis for three weak rainfall in the range of 7.1-10.5 mm events in 2000, Chiba, Japan. A good agreement between simulated and observed runoff hydrograph was obtained. In comparison, the hydrograph simulated with land-use parameters by the detailed land-use information of 10m grid had an error between 31%~71%, while enhanced method showed 4% to 29%, and showed the improvement particularly for reproducing observed peak and recession flow rate of hydrograph in weak rainfall condition.

본 연구에서는 도시 비점오염물질의 퇴적과 배출특성의 파악, 우수저류/침투 시설의 계획과 효율평가, 건전한 도시의 물환경관리 등의 관점에서, 고해상도 인공위성과 GIS를 병용한 도시내 상세 토지이용분류 방법을 제안하였다. 제안된 방법을 적용하여 도시유역을 네 종류의 지표면으로 분류하였으며, 기존의 실내조사방법이나 GIS만을 이용한 방법으로는 불투수면으로 파악되었던 전체 유역면적의 3%에 달하는 건물옥상이나 도로의 중앙분리대에 조성된 화단 등을 투수면으로 분류하였다. 강우유출모의의 정확도 향상에 있어서 토양피복별 분포 및 면적의 차이가 미치는 영향을 파악하기 위해, 추출된 각 토양피복에 강우손실 파라미터를 설정하여, 총강우량 7.1~15.0 mm의 강우사상에 대한 강우유출해석을 실시하였다. 기존의 10m 격자의 세밀토지이용 정보에 의한 토양피복 분류결과를 이용한 강우유출 해석에서는 관측유량과의 오차가 31~71%이었던 것이, 제안된 토양피복 분류기법을 이용한 강우유출 해석에서는 그 오차가 4~29%로 향상되었으며, 특히 강우규모가 적을 때의 유출수문곡선의 첨두유량과 유량증감부 등의 유출특성에 대한 재현성에 있어서 향상된 결과를 나타내었다.

Keywords

References

  1. Mangani, G., Berloni, A., Bellucci, F., Tatano, F. and Maione, M., "Evaluation of the pollutant content in road runoff first flush waters," Water, Air Soil Pollut., 160, 213-228(2005). https://doi.org/10.1007/s11270-005-2887-9
  2. Marsalek, J., Krishnappan, B. G., Exall, K., Rochfort, Q. and Stephens, R. P., "An elutriation apparatus for assessing settleability of combined sewer overflows (CSOs)," in Proceedings of 10th International Conference on Urban Drainage, Copenhagen/Denmark, pp. 21-26(2005).
  3. Marques, M. J., Bienes, R., Jimenez, L. and Rerez-Rodriguez, R., "Effect of vegetal cover on runoff and soil erosion under light intensity events.Rainfall simulation over USLE plots," Sci. Total Environ., 378, 161-165(2007). https://doi.org/10.1016/j.scitotenv.2007.01.043
  4. Gresens, S. E., Belt, K. T., Tang, J. A., Gwinn, D. C. and Banks P. A., "Temporal and spatial responses of chironomidae (Diptera) and other benthic invertebrates to urban stormwater runoff," Hydrobiologia, 575, 173-190(2007). https://doi.org/10.1007/s10750-006-0366-y
  5. Bertrand-Krajewski, J., Chebbo, G. and Saget, A., "Distribution of pollutant mass vs volume in stormwater discharges and the first flush phenomenon," Water Res., 32, 2341-2356 (1998). https://doi.org/10.1016/S0043-1354(97)00420-X
  6. 일본 국토교통성, 기상청, http://www.jma.go.jp/jma/index.html
  7. Furumai, H., Jinadasa. H. K. P. K., Murakami, M., Nakajima, F. and Aryal, R. K., "Model description of storage and infiltration functions of infiltration facilities for urban runoff analysis by a distributed model," Water Sci. Technol., 52(5), 53-60(2005).
  8. Cosen, K. J. and Jensen, J. R., "Extraction and modeling of urban attributes using remote sensing technology, people and pixels," Linking remote sensing and social science, National Academy Press, Washinton D. C., pp. 164-188 (1998).
  9. Hashiba, H., Kameda, K., Tanaka, S. and Sugimura, T., "Extraction of distribution for small-scale vegetation in urban area using high-resolution satellite data," Doboku Gakkai Ronbunshuu., 685(VII-20), 27-39(2001).
  10. 김성수, 김종석, 방기연, 권은미, 정욱진, "경안천 유역의 강우사상별 비점오염원 유출특성 및 원단위 조사," 대한환경공학회지, 24(11), 2019-2027(2002).
  11. 신창민, 최지용, 박철휘, "도시지역에서의 토지이용별 비점오염물질 유출특성," 대한환경공학회지, 26(7), 729-735(2004).
  12. 전형섭, 김태근, 조기성, 김환기, "GIS를 이용한 비점오염원의 원인지역 추출에 관한 연구," 대한환경공학회지, 18(4), 451-463(1996).
  13. 김석구, 김영임, 강성원, 윤상린, 김소정, "강우에 의한 도로 비점오염원 유출 특성," 대한환경공학회지, 28(1), 104-110(2006).
  14. 일본 총무성, 통계국, "주택․토지통계 조사," http://www.pref.chiba.lg.jp/toukei/toukeidata/jutakutochi/index.html
  15. Hijioka, Y., Furumai, H. and Ichikawa, A., "Urban runoff analysis by a distributed model utilizing sewer ledger database and detailed land use data," Jpn. Sewage Works Assoc., 38(4), (2001).
  16. Kim, J., Furumai, H. and Aramaki, T., "Practical identification method for vegetation in urban region using two spectral edge in high resolution satellite imagery," Doboku Gakkai Ronbunshuu G, 66(1), 46-55(2010). https://doi.org/10.2208/jscejg.66.46
  17. 일본 도쿄도 환경보전국 편집발행, "녹피율 표준조사메뉴얼," pp. 3(1988).
  18. 일본 국토교통성, 국토기술정책종합연구소, "도시녹지조사를 위한 인공위성기술의 활용에 관한 조사," pp. 67 (2003).
  19. Tobon Marin, C., Bouten, W. and Sevink, J., "Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in foure forest ecosystems in western Amazonia," J. Hydrol., 237, 40-57(2000). https://doi.org/10.1016/S0022-1694(00)00301-2
  20. Crockford, R. H. and Richardson, D. P., "Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate," Hydrol. Proc., 14, 2903-2920(2000). https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2903::AID-HYP126>3.0.CO;2-6