• Title/Summary/Keyword: 강우시간 분포법

Search Result 78, Processing Time 0.032 seconds

A study on application of GPU-accelerated kinematic wave rainfall-runoff model (GPU 가속 운동파 강우유출모형의 적용 연구)

  • Kim, Boram;Yun, Gwan Seon;Kim, Hyeong-Jun;Yoon, Kwang Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.323-323
    • /
    • 2020
  • 그래픽 처리 장치(Graphic Processing Unit: GPU)는 그래픽 처리 작업에 특화된 다수의 산술논리 장치(Arithmetic Logic Unit: ALU)로 구성되어 있어서 중앙 처리 장치(Central Processing Unit: CPU)보다 한 번에 더 많은 연산 수행이 가능하다. 본 연구는 GPU 가속 운동파모형을 실제 유역에 적용하여, GPU 가속 운동파 강우유출모형 결과에 대한 정확성과 연산 소요 시간에 대한 효율성을 확인하였다. GPU 가속 운동파모형은 분포형 강우유출모형의 수치모의 연산시간을 단축시키기 위해 CUDA 포트란을 이용하여 개발되었다. 분포형모형의 지배방정식은 운동파모형과 Green-Ampt모형으로 구성되었고, 운동파모형은 유한체적법을 이용하여 이산화 하였다. GPU 가속 운동파모형을 이용하여 금강의 미호천 유역에서 발생하는 강우유출현상을 모의 하였고, 동일한 유한체적법을 이용한 CPU(Central Processing Unit) 기반의 강우유출모형과 비교하였다. 그 결과 GPU 가속모형의 결과는 미호천 유역 하류단에서 관측한 결과와 유사한 결과를 나타냈다. 또한, 연산소요시간은 CPU 기반의 강우유출모형의 연산소요시간보다 단축되었으며, 본 연구에 사용된 장비를 기준으로 최대 100배 정도 단축되었다.

  • PDF

A Study on the Application of Time Distribution Model for Design Storms (설계강우의 시간적 분포모형 적용성 연구)

  • 서진호;이상배
    • Water for future
    • /
    • v.28 no.5
    • /
    • pp.205-217
    • /
    • 1995
  • The historical data from 3, 550 event storms during 11 years in Wi-stream basin have been used to investigate the statistical parameter of the time distribution for design storms by the method of Yen-Chow, Huff, Pilgrim-Cordery and Mononobe. The dimensionless value of triangular hyetograph, $a^0$, ranges from 0.44 to 0.50 and trapezoidal hyetograph, $h^0$, value increases as the duration time is getting longer in Yen-Chow method. In the Huff, the second-quartile storms occurred most frequently and third-quartile storms occurred most infrequently. In the Pilgrim-Cordery, the shapes for shorter than 6-hour durations are advanced tendency. However, for longer than 6-hour durations show delayed tendency. In the Mononobe, every one hour rainfall occured Centered Type. The application of these methods for each duration time was tested by using the observed rainfall-runoff data of Wi-stream basin. As a result, the reappearance of hydrographs of triangular hyetograph by Yen-Chow method showed promising, and it was approved to be used for prediction of the ungaged basins.

  • PDF

Flood Analysis Using Distributed Runoff Model in Moutainous Watershed (산지하천 유역에서의 분포형 유출모형을 통한 홍수 해석)

  • Kim, Seung-Joo;Choi, Chang-Won;Yi, Jae-Eung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1274-1278
    • /
    • 2010
  • 우리나라는 국토의 60% 이상이 산지로 구성되어 있다. 현재 국내에서는 홍수유출 해석 시 집중형 모형을 주로 이용하고 있다. 집중형 모형은 대개 유역 최하류 지점의 유출구를 기준으로 홍수유출 해석 모형의 매개변수 추정 및 검증이 이루어지며, 유역의 매개변수를 소유역별로 동일하게 가정하여 입력 자료를 구성한다. 따라서 산지하천 유역의 홍수유출 해석 및 예측 시 경사가 급하고 고도가 높으며 집중시간이 빠른 산지하천의 지형적 요소 및 특징을 적절히 고려하지 못하여 정확한 예측 및 해석을 하는데 어려움이 발생한다. 분포형 모형은 하나의 유출구가 아닌 임의의 지점에서 홍수유출 해석이 가능하며, 강우자료 입력 시 유역 평균강우가 아닌 분포형 강우, 즉 역거리자승법, 크리깅 기법 등을 사용하여 분포형 강우로 변환한 지점강우와 레이더 강우를 사용하여 보다 정확한 홍수유출 해석이 가능하다. 그리고 분포형 모형은 입력하는 모든 매개변수를 지형 자료에서 추출하여 사용하기 때문에 인공적인 해석을 배제할 수 있어 인위적인 오차를 줄일 수 있다. 본 연구에서는 평창강 상류유역을 시험유역으로 선정하여 연구를 수행하였으며, 분포형 모형의 하나인 $Vflo^{TM}$를 사용하여 홍수유출해석을 수행하였다. 지형자료만을 사용하여 특정 지점이 아닌 유역 내 임의 지점의 홍수유출량과 집중시간, 홍수위를 산정할 수 있어 산지하천에서 돌발적으로 발생하는 홍수를 신속하게 예측할 수 있었다. 또한 임의의 지점에서의 설계홍수량을 손쉽게 산정하여 수공구조물 설계 시 이용할 수 있으므로 홍수에 의한 인적 물적 피해를 최소할 할 수 있을 것으로 기대된다.

  • PDF

Radar Rainfall Adjustment by Kalman-Filter Method and Flood Simulation using two Distributed Models (칼만필터 기법에 의한 레이더 강우 보정 및 분포형 모형을 이용한 홍수 모의)

  • Bae, Young-Hye;Kim, Byung-Sik;Seoh, Byung-Ha;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.147-153
    • /
    • 2008
  • 본 연구에서는 레이더 강우를 이용하여 시공간적 변동성을 고려한 격자형 면적강우량을 산정하기 위하여 추계학적 방법인 칼만필터 기법을 이용하여 지상 강우 관측망과 레이더 강우 관측망을 조합하여 면적강우량을 산정하였다. 또한 전통적인 지상 강우량을 면적강우량으로 전환하는 기법인 Thiessen법, 역거리법, 크리깅 기법을 이용하여 면적강우량을 산정한 후 칼만필터 기법에 의해 보정된 면적 레이더 강우와 비교 하였다. 그 결과, 칼만필터 기법에 의해 보정된 레이더 강우는 실제 강우 분포와 유사한 공간분포를 가지는 원시 레이더 강우 분포를 잘 재현하면서도 강우 체적(볼륨)은 우량계 자료의 체적과 유사하게 나타났다. 그리고 칼만필터 기법에 의해 보정된 레이더 강우를 물리적 기반의 분포형 모형인 $Vflo^{TM}$ 모형과 준분포형 모형인 ModClark 모형에 적용하여 홍수유출을 모의하였다. 그 결과, $Vflo^{TM}$ 모형은 첨두시간과 첨두치가 관측 수문곡선과 유사하게 모의되었으며 ModClark 모형은 총 유출체적에서 좋은 결과를 나타냈다. 그러나 매개변수 검증에서는 $Vflo^{TM}$ 모형이 ModClark 모형보다 관측 수문곡선을 잘 재현하였다. 이를 통해 지상강우와 레이더 강우를 적절하게 조합하여 정확도 높은 면적강우량을 산정하고 분포형 수문모형과 연계하여 홍수유출모의를 실시할 경우 충분한 적용성을 가지고 있음을 확인할 수 있었다.

  • PDF

Comparison of Regression Coefficient Significance Test for Temporal Distribution by Multiple Regression Analysis Method (다중회귀분석 방법에 따른 시간분포 회귀식의 회귀계수 유의성 검정 비교)

  • Lee, Sung Ho;Lee, Jae Joon;Park, Jin Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.205-205
    • /
    • 2019
  • 우리나라에서 강우의 시간분포를 위해 보편적으로 사용되고 있는 방법은 Huff 4분위법으로 강우의 시간적 분포특성을 나타내는 무차원 시간분포곡선을 제시한 것으로, 강우의 지속기간을 4분위로 구분하여 각 분위의 강우량 중 가장 큰 값이 속해 있는 구간을 선택하여 그 구간의 위치에 따라 분위를 정하는 방법이다. 현재 실무에서는 Huff의 분위별 곡선에 대한 회귀식은 지속기간 전반에 걸쳐 정확도가 높은 이유로 6차식을 적용하고 있으나, 통계 모델링에서 간결함의 원리에 따라 회귀식이 간결할 필요가 있으며, 통계적 유의수준에 기초하여 회귀계수를 결정하여야 하므로 유의성 검정 방법을 통한 검정결과를 비교할 필요가 있다. 따라서 본 연구에서는 다중회귀분석 방법에 따른 회귀계수 유의성 검정결과 비교를 위하여 구미지역의 무차원 누가우량 백분율을 이용한 시간분포 회귀식을 이용하여 유의성 검정 방법인 분산분석 방법(Analysis of Variance)과 변수선택 방법(Backward Selection)의 검정 결과를 도출 및 비교하였다. 통계프로그램인 프로그래밍 R을 이용하여 변수선택 방법 중 후방제거법 함수를 이용하여 최종 회귀식을 도출하고 또한 7차 회귀식을 분산분석을 이용한 후방제거법으로 회귀계수를 제거하는 방법으로 최종 회귀식을 산정하였다. 분산분석을 이용한 후방제거법의 유의성 검정결과는 프로그래밍 R을 이용한 후방제거법의 결과와 동일한 것으로 분석되었다. 일반적으로 설계강우량의 시간분포를 위한 방법으로 사용되고 있는 Huff의 4분위 방법의 시간분포 회귀식은 회귀계수의 유의성 검정이 이루어지고 있지 않으므로 본 연구결과를 통해 설계강우량 시간분포 회귀식의 유의성 검정방법 제시 및 결과도출과정을 통해 시간분포 회귀식 산정기법으로 활용할 수 있을 것으로 사료된다.

  • PDF

Construction of Intensity-Duration-Frequency Curve Using a Spatial-Temporal Downscaling Approach of GCM (GCM의 시간적, 공간적 축소화기법 이용한 미래의 IDF곡선 생성)

  • Oh, Jin-Ho;Chung, Eun Sung;Lee, Kil Seong
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.175-175
    • /
    • 2011
  • IDF 곡선은 수리구조물의 설계에 이용되며 본 연구에서는 기후변화를 고려한 GCM의 시간적 공간적 축소화기법을 통하여 미래의 IDF 곡선을 생성하였다. GCM자료로는 HadCM3과 CGCM3의 지역주의와 경제발전을 지향하는 A2시나리오를 이용하였다. GCM자료에 대한 공간적인 축소화기법으로 다중회귀 모형인 SDSM(Statistical DownScaling Model)을 이용하여 2030년, 2050년, 2080년의 미래의 일강우 자료를 생성하였다. 이를 다시 시간적 축소화기법인 GEV분포를 이용한 Scaling-Invariance기법을 적용하여 시단위의 강우자료를 생성하였다. 이를 통해 최종적으로 HadCM3과 CGCM3에 대한 각각 미래의 IDF곡선을 생성하였다. CGCM3의 경우 지속적인 강우강도의 증가를 보였지만 HadCM3의 경우 2050년대 감소하다 2080년대 다시 증가하는 양상을 보였다. 또한 CGCM3의 경우 HadCM3의 경우보다 좀 더 높은 강우 강도를 보였다. 본 연구의 대상지역은 서울지역이며 생성된 자료의 신뢰성을 확보하기위하여 서울기상관측소의 1961년부터~2000년까지의 일단위 강우자료를 이용하여 검 보정을 수행하였다.

  • PDF

Expectation Analysis of Inundation Using Distributed Model in NamgangDam Basin (분포형 모형을 적용한 남강댐 유역의 침수예측 분석)

  • Park, Mi Ri;Park, Sung Je;Lee, Young Kune
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.584-584
    • /
    • 2015
  • 최근 기후변화로 인한 국지성 집중호우와 태풍 등으로 홍수피해가 급증하고 있음에 따라 침수지역에 대한 공간적인 분석과 사전 예측으로 피해를 최소화하려는 노력이 필요하다. 따라서 본 연구에서는 소유역 별 평균화된 매개변수로 홍수량을 산정하는 집중형 모형이 아닌 분포형 모형을 적용하여 남강댐 유역의 유출량 산정 및 침수예측을 분석하였다. 분포형 모형은 격자체계를 기반으로 유역에 각 격자별 공간적 특성이 반영된 매개변수를 적용하므로 유역의 특성을 효과적으로 반영하므로 집중형 모형보다 정확한 해석이 가능하다. DEM, 토양도, 토지피복도 등의 격자크기 $240{\times}240$의 지형공간 자료를 ArcGIS를 이용하여 남강댐유역의 Flow direction, 경사도, 하도경사, 불투수율, 유효공극률, 조도계수, 토양심도, 수리전도도, 토양흡인수두 등의 수문매개변수를 추출하였다. 강우 자료의 경우 티센(Thiessen)법에 의해 선정된 남강댐유역 주변의 장수, 거창, 진주, 합천, 산청, 남원 강우관측소의 100년빈도 확률강우량 산정하여 24시간 확률강우를 3분위 Huff 분포시킨 후 강우의 공간적 통계특성을 반영하는 크리깅(Kriging)기법으로 적용하여 강우보간을 실시하였다. 침수예측을 위해 $Vflo^{TM}$모형을 이용해 48시간의 강우모의시간 홍수수문곡선 유도 및 홍수량 산정하였으며, 시간에 따른 침수 시뮬레이션하여 침수예측도를 작성하였다. 작성 시 침수심의 정도에 따라 5개의 구간으로 분류해 침수위험지역을 확인 할 수 있도록 도식화하였다. 본 연구에서는 남강댐유역의 침수위험지역을 개략적으로 예측할 수 있었으며, 추후 연구에서는 보다 조밀한 격자크기와 강우를 이용하여 분석한다면 향후 피난 정보 제공과 홍수재해지도 작성, 홍수방지 시설물 건설 또는 홍수보험계획 등에 응용이 될 것으로 판단된다.

  • PDF

Frequency Analysis of Rainfall Data Using Advanced GEV Distribution (개선된 GEV 분포를 이용한 강우량 빈도분석)

  • Lee, Kil-Seong;Kang, Won-Gu;Park, Kyung-Shin;Sung, Jin-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1321-1326
    • /
    • 2009
  • 강우는 수자원 확보 측면에서 근원이 되는 요소이다. 그러므로 정확한 확률강우량 산정은 미래의 가용 수자원량을 예측하는데 있어 중요한 사항중 하나이며 무엇보다 신중한 결정이 요구된다. 또한 하천의 범람에 의한 침수를 예방하는 수공구조물 등의 설계에 있어서는 신뢰할 수 있는 확률강우량 산정이 선행되어야 한다. 본 연구에서는 최근 우리나라 극치강우확률분포로서 많은 연구가 이루어지고 있는 GEV 분포(GEV-O)를 기반으로 위치 매개변수에 시간의 함수를 고려한 개선된 GEV 분포(GEV-A)를 이용하여 서울지점에 적용함으로서 GEV-O 분포에 의한 확률강우량과 GEV-A 분포로 산정된 확률강우량을 비교 검토하였다. 먼저 임의의 난수 발생을 통해 최우도추정법과 확률가중모멘트법으로 매개변수를 추정한 GEV-O 분포와 최우도추정법으로 매개변수를 추정한 GEV-A 분포의 상대평균제곱근오차 (R-RMSE)를 계산하여 비교함으로서 GEV-A 분포의 효율성을 판단하였다. 사례연구는 1961년부터 2008년까지 서울강우관측소에서 측정된 연최대 1일 강우량으로 하였으며 $X^2$-검정, PPCC-검정으로 적합도 검정을 실시하였다. 강우빈도분석 결과 GEV-A 분포가 GEV-O 분포로 산정된 결과 보다 대체로 재현기간 200년 이상일 경우, 과다 산정되는 경향을 보였다. 추후 개선된 GEV 분포를 서울 인근 지점에 적용함으로서 지역빈도해석(Regional Frequency Analysis)을 실행하기 위한 연구가 진행되어야 할 것이다. 또한 확률홍수량 산정 등에도 개선된 GEV 분포를 이용함으로서 보다 정확하고 신뢰성 있는 확률수문량을 예측하여야 할 것이다.

  • PDF

Application Analysis of GPU-Accelerated Kinematic Wave Model Using CUDA Fortran (CUDA FORTEAN을 이용한 GPU 가속 운동파모형 적용성 분석)

  • Kim, Boram;Kim, Hyung-Jun;Kim, Sooyoung;Yoon, Kwang Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.346-346
    • /
    • 2022
  • 본 연구에서는 GPU(Graphic Processing Unit) 가속 분포형모형을 실제 유역에 적용하여 강우 유출모의 결과의 정확성과 모의시간의 효율성에 대한 분석을 수행하였다. 분포형모형의 지배방정식은 운동파모형과 Green-Ampt모형으로 구성되어 있으며, 운동파모형은 유한체적법을 이용하여 이산화 하였다. GPU 가속 모형은 CUDA(Compute Unified Device Architecture) 포트란(Fortran)을 사용하여 개발된 모형으로 수치모의시 연산시간 단축을 고려한 모형이다. 모형의 정확성과 효율성은 미호천 유역에서 발생하는 강우유출현상에 GPU 가속 운동파모형을 적용하여 분석하였다. 수치모의 결과값은 대상유역에 속한 수위관측소의 관측값과 비교하여 정확성을 검증하였고, 수치모의 소요시간은 CPU(Central Processing Unit) 기반 운동파모형의 수치모의 소요시간과 비교하여 효율성을 검증하였다. GPU 가속 운동파모형의 수치모의 결과는 관측값과 유사한 결과를 나타냈으며, 수치모의 소요시간은 본 연구에 사용된 장비를 기준으로 최대 100배 정도 단축되었다.

  • PDF

Suggestion of Probable Rainfall Intensity Formula Considering the Pattern Change of Maximum Rainfall at Incheon City (최대강우 패턴 변화를 고려한 인천지방 확률강우강도식의 제안)

  • Han Man-Shin;Choi Gye-Woon;Chung Yeun-Jung;Ahn Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.6 s.167
    • /
    • pp.521-531
    • /
    • 2006
  • The formula was proposed through the examination of probability rainfall intensity formula used in Incheon based upon recent occurrences of heavy rain and extraordinary storms. Random-time maximum annual rainfalls were estimated for durations from ten minutes to twenty-four hours from the data by Korea Meteorological Administration. Eleven types of probability distribution are considered to estimate probable rainfall depths for different storm durations at Incheon city. Three goodness-of-fit tests including Chi-square, Kolmogorov-Smirmov and framer Von Misses were used to analyze the tendency of recent rainfall. Considering maximum rainfall occurred, General Extreme Value(GEV) distribution was chosen as the appropriate probability distribution. Five types of probability rainfall formulas including Talbot type, Sherman type, Japanese type, unified type I and unified type II are considered to determine the best type for rainfall intensity at Incheon. The formula was determined considering the time of concentration of sewer system and river at Incheon city. Unified type I was chosen for its accuracy and was proposed to represent rainfall intensity of Incheon district.