• Title/Summary/Keyword: 강성 효과

Search Result 1,348, Processing Time 0.03 seconds

Stiffness Design Method of Steel Structures using Resizing Techniques (재분배기법을 이용한 강구조물의 강성설계법)

  • Ahn, Sun A;Park, Hyo Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.63-72
    • /
    • 1998
  • The stiffness design method is presented as a drift control model of steel structures and applied to design of space trusses subjected to stress and displacement constraints. The stiffness design method is developed by integrating the resizing techniques for an effective drift control algorithm with the strength design process according to the commonly used design specifications such as allowable stress design. In the resizing technique the amount of material to be modified depends on the member displacement participation factors and is determined by an optimization technique. Using the stiffness design method, a structural design model for steel structures is proposed and applied to two verifying examples. As demonstrated in the examples, the displacement of the structures can be effectively controlled without expensive computational cost.

  • PDF

Influence of Facing Stiffness on Global Stability of Soil Nailing Systems (전면벽체의 강성이 Soil Nailing 시스템의 전체안정성에 미치는 영향)

  • Kim, Hong-Taek;Kang, In-Kyu;Kwon, Young-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.51-60
    • /
    • 2004
  • In Korea there are recently many attempts to expand a temporary soil nailing system into a permanent soil nailing system since the first construction in 1993. In the soil nailing system, the rigid facing walls act on restraining the deformation of the ground. These are purposed to minimize the damage of adjacent buildings or underground structures. In Korea, to minimize the relaxation of the ground, the soil nailing system in the downtown area is often used experientially together with braced cuts, sheet pile walls, soil cement walls (SCW), or jet grouting walls. However, for the conservative design, the confining effects by the stiff facing have been ignored because the proper design approach of considering the facing stiffness has not been proposed. In this study, various laboratory model tests are carried out to examining the influence the rigidity of facings on the global safety of soil nailing system. Also, the parametric studies using the numerical technique as shear-strength reduction technique are carried out. In the parametric study, the thickness of concrete facing walls is changed to identify the effects of the facing wall stiffness.

  • PDF

Evaluation on Stiffness of Mortar-filled Sleeve Splice Using Estimation Method of Failure Mode (파괴모드 추정방법을 이용한 모르타르 충전식 슬리브 철근이음의 강성 평가)

  • Kim, Hyong Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • The objective of this study is to evaluate the stiffness of mortar-filled sleeve bar splice using estimation method of failure mode in the sleeve reinforcement splice. To attain this goal, we analyzed the test results of 261 actual-sized mortar-filled sleeve splice specimens. The study results showed that the estimation method of the failure mode in mortar-filled sleeve bar splice made an effective estimate of the stiffness in this bar splice with the exception of specimens with SD500 bars and smooth pipe sleeve. Especially, of the specimens with cast sleeve or uneven pipe sleeve in the range of reinforcement fracture using the estimation method of the failure mode in mortar-filled sleeve splice, specimens over 98% with SD400 bars and all specimens with SD500 bars had the stiffness capacity of higher than "A" class of AIJ code in monotonic loading. In addition, of the specimens in the range of reinforcement fracture using the estimation method of the failure mode in mortar-filled sleeve splice, all specimens with SD400 bars and SD500 bars had the stiffness capacity of higher than "A" class of AIJ code in cyclic loading.

Stiffness Characterization of Subgrade using Crosshole-Type Dynamic Cone Penetrometer (크로스홀 형태의 동적 콘 관입기를 이용한 노반의 강성특성 평가)

  • Hong, Won-Taek;Choi, Chan Yong;Lim, Yujin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.55-63
    • /
    • 2018
  • In order to support the load of the train with enough stiffness, a study on an effective method for the characterization of the stiffness of the compacted subgrade is required. In this study, the crosshole-type dynamic cone penetrometer (CDCP) is used for the stiffness characterization of the subgrade along the depth. For the application of the CDCP test, three points of compacted subgrades are selected as the study sites. For the study sites, CDCP test, in-situ density test, and light falling weight deflectometer (LFWD) test are conducted. As the results of CDCP tests, shear wave velocity profiles are obtained by using the travel times and the travel distances of the shear waves along the depth. In addition, maximum shear modulus ($G_{max}$) profiles are estimated by using the density of the subgrades and the shear wave velocity profiles. The averaged maximum shear moduli at each testing point are highly correlated with the dynamic deflection moduli ($E_{vd}$) determined by LFWD tests. Therefore, a reliable stiffness characterization of the subgrade can be conducted by using CDCP tests. In addition, because CDCP characterizes the stiffness of the subgrade along the depth rather than a representative value, CDCP test may be effectively used for the stiffness characterization of the subgrade.

Use of a Genetic Algorithm to Predict the Stiffness Reductions and Retrofitting Effects on Structures Subjected to Seismic Loads (지진하중을 받은 구조물의 유전알고리즘 기반 강성저하 및 보강 효과 추정)

  • Lee, Jae-Hun;Ahn, Kwang-Sik;Lee, Sang-Youl
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.193-199
    • /
    • 2020
  • This study examines a method for identifying stiffness reductions in structures subjected to seismic loads and retrofitting effects using a combination of the finite element method and an advanced genetic algorithm. The novelty of this study is the application of seismic loading and its response to anomalies in the tested structure. The technique described in this study may enable not only detection of damaged elements but also the identification of their locations and the extent of damage due to seismic loading. To demonstrate the feasibility of the method, the advanced genetic algorithm is applied to frame and truss bridge structures subjected to El Centro and Pohang seismic loads. The results reveal the excellent computational efficiency of the method and its ability to prevent severe damage from earthquakes.

The Experimental Studu on the P-Δ Influence of Weak Beam Unbraced Frames (보항복형 비가새 골조의 PΔ 영향에 관한 실험적 연구)

  • Kim, Hee Dong;Park, Sang Chul;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.363-372
    • /
    • 2001
  • The objective of this study is to evaluate the $P-{\Delta}$ effect in the case of weak beam unbraced frames by experimental approach. To evaluate $P-{\Delta}$ effect, four specimens were tested under monotonic loading condition. The parameters of tests are the stiffness of column and the axial load ratio. The results show that the value of axial load affects frame stability because $P-{\Delta}$ effects promote the yielding of beam. The maximum lateral load increases in proportion to the increment of column stiffness and rotational stiffness of supports, The collapse mechanism of weak beam unbraced frames is stably formed in the condition of low axial load ratio. The $B_2$ factor of limit state design code does not properly consider the $P-{\Delta}$ effect in inelastic region.

  • PDF

Evaluation of the Lateral Ultimate Strength of Steel Moment Resisting Frames under Axial and lateral Forces (수평력과 축력을 받는 강골조의 최대수평내력 평가)

  • Kim, Jong Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.69-78
    • /
    • 1999
  • When the lateral forces are applied to a frame, columns in the frame are usually accompanied with sidesway. If this sidesway is large, the frame is subjected to buckling and an early yielding of members which reduces the overall frame stiffness. In this study, numerical analysis of frames were conducted to evaluate the ultimate lateral strength of steel moment resisting frames permitted to sidesway under axial and lateral forces, and develope the procedure for determining the limits of column slenderness ratios. In the numerical analysis, the effects of the relative stiffness ratio between beam and column, deterioration of overall frame stiffness, slenderness ratio and loading conditions were considered. The elasto-plastic analysis method in which the $P-{\Delta}$effect is implemented, presented by the author previously, was adopted in the analysis. Incremental lateral forces were applied to the frame under constant axial loads and the generalized inverse is employed for the post-ultimate behavior.

  • PDF

Principles and Considerations of Bender Element Tests (벤더엘리먼트 시험의 원리와 고려사항)

  • Lee Jong-Sub;Lee Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.47-57
    • /
    • 2006
  • The shear wave velocity is related with the stiffness of granular skeleton and mass density. The shear stiffness of the granular skeleton remains unaffected by the presence of the fluid. Bender elements are convenient shear wave transducers for instrumenting soil cells due to optimal soil-transducer coupling. This study addresses the principles of the shear wave, the design and implementation of bender elements including electromagnetic coupling prevention, directivity, resonant frequency, detection of first arrival, and near field effects. It is shown that electromagnetic coupling effects can be minimized using parallel-type bender elements. Thus, the in-plane S-wave directivity is quasi-circular. The resonant frequency of bender element installations depends on the geometry of the bender element, the anchor efficiency and the soil stiffness. One of the most cumbersome parts in the bender element test is near field effects, which affect the selection of arrival time. The selection of the first arrival within the near field Is effectively solved by the multiple reflection technique and signal matching technique. Bender elements, which requires several considerations, may be effective tools for the subsurface characterization by using S-wave.

Equivalent Design Parameter Determination for Effective Numerical Modeling of Pre-reinforced Zones in Tunnel (터널 사전보강 영역의 효과적 수치해석을 위한 등가 물성치 결정 기법)

  • Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.2
    • /
    • pp.151-163
    • /
    • 2006
  • Although various methods for effective modeling of pre-reinforced zones have been suggested for numerical analysis of large section tunnels, tunnel designers refer to empirical cases and literature reviews rather than engineering methods because ones who use commercial programs are unfamiliar with a macro-scale approach in general. Therefore, this paper suggests a simple micro-scale approach combined with the macro-scale approach to determine equivalent design parameters for effective numerical modeling of pre-reinforced zones in tunnel. This new approach is to determine the equivalent stiffness of pre-reinforced zones with combination of ground, bulb, and steel in series or/and parallel. For verification, 3-D numerical results from the suggested approach are compared with those of a realistic model. The comparison suggests that two cases make best approximation to a realistic solution: One is related to the series-parallel stiffness system (hereafter SPSS) in which bulb and steel are coupled in parallel and then connected to the ground in series, and the other is the series stiffness system (hereafter SSS) in which only bulb and steel are coupled in series. The SPSS is recommended for stiffness calculation of pre-reinforced zones because the SSS is inconvenient and time-consuming. The SPSS provides slightly bigger vertical displacement at tunnel crown in weathered rock than other cases and give almost identical results to a realistic model for horizontal displacement at tunnel spring line and ground surface settlement. Displacement trends on weathered rock and weathered soil are similar. The SPSS which is suggested in this paper represents the behavior mechanism of pre-reinforced area effectively.

  • PDF

Effect of Foundation Flexibility of Offshore Wind Turbine on Force and Movement at Monopile Head (해상풍력발전기 기초구조물의 강성이 모노파일 두부의 부재력 및 변위에 미치는 영향)

  • Jung, Sungmoon;Kim, Sung-Ryul;Lee, Juhyung;Le, Chi Hung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.21-31
    • /
    • 2014
  • Recently, the research on renewable energy against depletion of fossil fuel have been actively carried out in the world. Especially, offshore wind turbines are very economical and innovative technology. However, offshore wind turbines experience large base moments due to the wind and wave loading, so the monopile with large diameter needs to be applied. For the economical design of the large diameter pile, it is important to consider the flexibility of the foundation to estimate the maximum moment accurately, based on studies conducted so far. In this paper, the foundation was modeled using the finite element method in order to better describe the large diameter effect of a monopile and the results were compared with those of p-y method. For the examples studied in this paper, the change in maximum moment was insignificant, but the maximum tilt angle from the finite element method was over 14% larger than that of p-y method. Therefore, the finite element approach is recommended to model the flexibility effect of the pile when large tilt angles may cause serviceability issues.