• Title/Summary/Keyword: 강성 최적화

Search Result 283, Processing Time 0.025 seconds

Rapid Surface Modification via Mussel-Inspired Polymer Coating

  • Hong, Sang-Hyeon;Gang, Seong-Min;Lee, Hae-Sin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.88-88
    • /
    • 2012
  • 도파민은 홍합 모방물질로 표면개질 가능한 표면의 다양성과 편리한 개질 방법으로 인해 여러 분야에서 각광받고 있다. 본 연구에서는 이러한 도파민 표면개질 방법을 최적화 시켜 수분 안에 기존의 특성에 변화를 주지 않고 표면개질이 가능 하도록 개선시켰다.

  • PDF

Stiffness Determination Of A Bolted Member Using Optimization Technique (최적화 기법을 이용한 보울트 체결체의 강성 평가)

  • 김태완;조덕상;성기광;손용수;박성호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.151-157
    • /
    • 1993
  • In this paper a useful method on evaluating the joint stiffness of bolted memeber was introduced using optimization technique on the basis of Finite Element Method. A finite element model having one directional gap element at bo undary area was introduced to compensate the prying force in jointed members which might caused by geometrical configuration of members. Results showed a good aggrement with classical method in certain range and will be available to definine the design margine of pre-load design.

  • PDF

Mathematical Optimization Models for Determination of Optimal Vertical Alignment (종단선형설계 최적화 기법에 관한 연구)

  • 강성철;전경수;박영부
    • Journal of Korean Society of Transportation
    • /
    • v.12 no.3
    • /
    • pp.5-13
    • /
    • 1994
  • In the fields of rail and road design, most vertical alignment design have been thus far heavily dependent upon trial-and-errors of experienced engineers. However, it has long been inefficient in productivity of designing process. In order to overcome this inefficiency, this paper presents the optimal vertical alignment design method using mathematical optimization techniques. For optimization, mathematical model to minimize the construction cost is formulated and the separable programming technique and the Zoutendijk method are introduced to solve it. As result, it is shown that this optimization technique can give efficient solutions to all vertical alignment design fields with properly-estimated cost function.

  • PDF

Development of Optimum Structural Analysis Program for Space Truss Structures (스페이스 트러스 구조에 대한 최적화 구조 해석 프로그램의 개발)

  • Sohn, Su Deok;Kim, Myung Sun;Kim, Seung Deog;Kang, Moon Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.487-495
    • /
    • 1998
  • Recently, the space truss has been attracted by many designers because of their ability to support significant loads with a minimum material. And it is relatively flexible to design the configuration of structures. This paper presents a volume optimization for the space truss on the basis of result evaluated from nonlinear analysis. The optimization of the truss is done by nonlinear optimum GINO(General Interactive Nonlinear Optimizer) program. The objective function considered is the volume of the steel bars. The constraints for optimum design are the design limits, such as the axial force strength, maximum slenderness, minimum thickness, allowable deflection and ratio of the external diameter to thickness of the circular tube bars.

  • PDF

Technical Papers : Optimization Method of Structure by Using Coupled Load Analysis (기술논문 : 연성하중해석을 이용한 구조 최적화 기법 연구)

  • Lee,Yeong-Sin;Kim,In-Geol;Hwang,Do-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.132-138
    • /
    • 2002
  • Of srategic importance nowdays is the development of high performance spacecraft bus. In this study, optimization for spacecraft structure is performed under the framework of coupled load analysis which is a branch of component mode synthesis with constrained mode and modal transient analysis. unlike the traditional method which uses the quasi-static table supplied by launch vehicle contractor, the present method adots the load results of previous coupled load analysis. It if shown that the proposed method can serve as a effective tool for the optimization spacecraft structure in the early stage of design and weight reduction by numerical example.

Analysis of the Major Design Parameters of a Pantograph-Railway Catenary System for Improving the Current Collection Quality (집전성능 향상을 위한 팬터그래프-전차선의 주요 설계 파라미터분석)

  • Cho, Yong Hyeon
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • Stiffness variations and wave propagation/reflection in railway catenaries are the primary sources of contact loss between a pantograph and a railway contact wire. This paper analyzes which design parameter is more important for 200km/h conventional rail and 300km/h high-speed rail, in order to effectively reduce the contact loss. For the high-speed rail, the wave propagation and reflection in the overhead contact lines are more influential than the stiffness variation over a span. When the high-speed rail needs to speed-up, it is necessary to develop higher strength contact wires in order to increase the wave propagation speed. In addition, the dropper clamp mass should be reduced in order to alleviate the wave reflection. However, it is noted that the increase in the tension to a messenger wire could deteriorate the current collection quality, which contrasts with expectations. For the 200km/h conventional rail, the stiffness variation over a span is more influential than the wave propagation and reflection. Therefore, shortening span length, increasing the tension in the contact wire and optimizing the location of the droppers are recommended for a smoother stiffness variation over the span.

Optimization of the Operating Stiffness of a Two-Axis Parallel Robot (2축 병렬로봇의 작동강성 최적설계)

  • Lee, Jae-Wook;Jang, Jin-Seok;Lee, Sang-Kon;Jeong, Myeong-Sik;Cho, Yong-Jae;Kim, Kun-Woo;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.561-566
    • /
    • 2015
  • In this paper, the operating stiffness of a parallel robot used to handle heavy packages is optimized. Because the studied model, called a "pick and place robot," is applied for packaging logistics, it is important for the robot to be lightweight so that it may respond rapidly and have high stiffness to allow sufficient operating precision. However, these two requirements of low weight and high stiffness are mutually exclusive. Thus, the dynamic characteristics of the robot are analyzed through multibody dynamics analysis, and topology optimization is conducted to achieve this exclusive performance. Lastly, the reliability of the topology optimization is verified by applying the optimized design to the parallel robot.

Optimum Shape Design of Gearbox Housing for 5MW Wind Turbines (5MW급 풍력발전기용 기어박스 하우징의 형상 최적설계)

  • Jeong, Ki-Yong;Lee, Dae-Yeon;Choi, Eun-Ho;Cho, Jin-Rea;Lim, O-Kaung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.237-243
    • /
    • 2012
  • The thickness optimization of the gearbox housing for 5MW wind turbine is carried out with the help of the efficient structure analysis model and the approximation model of objective function. Wind turbine gearbox is a complex structural system composed of a number of gear trains, shafts, bearing and gearbox housing, requiring a tremendous number of elements for the structural analysis and design. In this paper, an effective analysis and design model considering the tooth stiffness of helical gears is proposed. It enables to significantly reduce the total element number and the analysis time. Through the numerical optimization of housing thickness making use of the effective gearbox model and the approximate model of objective function, the total weight of the gearbox housing is minimized. It has been observed from the numerical experiment that the approximation model is reliable and the optimization result is acceptable and verified analysis.

Multi-Objective Integrated Optimal Design of Hybrid Structure-Damper System Satisfying Target Reliability (목표신뢰성을 만족하는 구조물-감쇠기 복합시스템의 다목적 통합최적설계)

  • Ok, Seung-Yong;Park, Kwan-Soon;Song, Jun-Ho;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.9-22
    • /
    • 2008
  • This paper presents an integrated optimal design technique of a hybrid structure-damper system for improving the seismic performance of the structure. The proposed technique corresponds to the optimal distribution of the stiffness and dampers. The multi-objective optimization technique is introduced to deal with the optimal design problem of the hybrid system, which is reformulated into the multi-objective optimization problem with a constraint of target reliability in an efficient manner. An illustrative example shows that the proposed technique can provide a set of Pareto optimal solutions embracing the solutions obtained by the conventional sequential design method and single-objective optimization method based on weighted summation scheme. Based on the stiffness and damping capacities, three representative designs are selected among the Pareto optimal solutions and their seismic performances are investigated through the parametric studies on the dynamic characteristics of the seismic events. The comparative results demonstrate that the proposed approach can be efficiently applied to the optimal design problem for improving the seismic performance of the structure.

Numerical Verification of Hybrid Optimization Technique for Finite Element Model Updating (유한요소모델개선을 위한 하이브리드 최적화기법의 수치해석 검증)

  • Jung, Dae-Sung;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.19-28
    • /
    • 2006
  • Most conventional model updating methods must use mathematical objective function with experimental modal matrices and analytical system matrices or must use information about the gradient or higher derivatives of modal properties with respect to each updating parameter. Therefore, most conventional methods are not appropriate for complex structural system such as bridge structures due to stability problem in inverse analysis with ill-conditions. Sometimes, moreover, the updated model may have no physical meaning. In this paper, a new FE model updating method based on a hybrid optimization technique using genetic algorithm (GA) and Holder-Mead simplex method (NMS) is proposed. The performance of hybrid optimization technique on the nonlinear problem is demonstrated by the Goldstein-Price function with three local minima and one global minimum. The influence of the objective function is evaluated by the case study of a simulated 10-dof spring-mass model. Through simulated case studies, finally, the objective function is proposed to update mass as well as stiffness at the same time. And so, the proposed hybrid optimization technique is proved to be an efficient method for FE model updating.