• Title/Summary/Keyword: 강성보강

Search Result 661, Processing Time 0.022 seconds

Study on the General Theory of Stiffened Plates (補剛平板의 一般理論 硏究)

  • 김천욱;원종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.287-295
    • /
    • 1987
  • The general equation of equilibrium is presented for a stiffened plate on which the stiffeners having rectangular cross-sections are attached by one or both sides with arbitrarily angles. The principle of minimum potential energy is applied using the concept of adjusted-centroid to derive the equilibrium equation for the stiffened plate. Equivalent rigidities in the present theory are in good agreement with the experiments by the vibration method.

A Study on Stiffness Strengthening of Multi-articulated Robot for Cutting Processes (절삭가공을 위한 다축 로봇의 강성보강에 관한 연구)

  • Cheong, Seon-Hwan;Choi, Seong-Dae;Kweon, Hyun-Kyu;Choi, Eun-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.39-45
    • /
    • 2004
  • Generally industrial multi-articulated robots are used for parts assembly, welding, and painting processes. The high flexibility of them is very useful to not only parts assembly, welding, and painting processes, but also machining processes. But because of machining processes to need a high stiffness of machine structure, so machining is usually not tried at them, except deburring processes now. During past three years the works are carried out to improve the stiffness of a industrial multi-articulated robot With some gas spring as a first idea in this research area. As a result of that stiffness was significantly up, and found and investigated the machining possibility at it.

  • PDF

Stiffness evaluation of elastomeric bearings for leg mating unit (LMU용 일래스토머릭 베어링의 강성평가)

  • Han, Dong-Seop;Jang, Si-Hwan;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.106-111
    • /
    • 2017
  • In this study, the stiffness of an LMU (Leg Mating Unit), which is a device required for installing the top side part of an offshore structure, was examined through structural analysis. This unit is mounted on the supporting point of the structure and is used to absorb the shock at installation. It is a cylindrical structure with an empty center. To support the vertical load, elastomeric bearings (EBs) and iron plates are laminated in layers. The stiffness of the EBs is basically influenced by the size of the bearings, but it varies with the number of laminated sheets inside the same sized structure. The relationship between the stiffener and the compressive stiffness is investigated, and its design is suggested. The stiffness of the EBs is analyzed by calculating the reaction force, while controlling the displacement. First, the relationship between the size of the reinforcing plate and the compressive stiffness is considered. Next, the relationship between the number of stacked reinforcing plates and the compression stiffness is considered. Different loads are required for each installed point. The goal is to design the compression stiffness in such a way that the same deformation occurs at each point in the analysis. In this study, ANSYS is used to perform the FE analysis.

Structural behavior on the steel beam with strengthening bonded carbon plate (카본판을 접착보강한 강재의 거동분석)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.1
    • /
    • pp.54-61
    • /
    • 2016
  • The use of advanced composite materials in strengthening and repair of existing structures is increasing rapidly. This paper describes an effectiveness of a bonding of carbon fiber reinforced sheets to corroded steel members for the repair. Three types of surface treatment, what we call cleaning, of corroded plate are chosen as parameters. They are "without cleaning","removal of painting by brushing" and "complete removal of painting". From the experimental study, the following findings are obtained. 1) When the steel plate is subjected to tensile force, carbon fiber sheets adhered to the painted steel gives a higher strength against peeling compared to that of the plate without painting, 2) The grade of surface treatment, or cleaning of the corroded steel plate affects the strengthening effect.

Strengthening of shear resistance of masonry walls (조적벽체의 전단강도 향상 방안에 관한 연구)

  • Kang, Sung-Hun;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.193-196
    • /
    • 2008
  • This paper presents an experimental study to investigate enhanced performance of the masonry walls strengthened in shear and ductility using honeycomb steel mesh. The performance of masonry walls strengthened with steel mesh will compare with unreinforced masonry walls to show the performance of reinforced masonry walls. According to the experiment, it is expected that this system is effective to enhance the shear strength and ductility of the masonry walls.

  • PDF

Experimental Investigation of The Shear Strengthening of Unreinforced Masonry Infilled RC Frames Using CFRP Sheet (CFRP Sheet를 이용한 철근콘크리트 프레임면내 조적벽체의 전단내력 평가에 관한 실험적 연구)

  • Lee, Young-Hak;Kim, Min-Sook;Byon, Eun-Hyuk;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • The purpose of this study is to investigate experimentally the behavior of unreinforced masonry RC frames strengthened by CFRP sheet under cyclic lateral loading. Four test specimens were constructed as one-story, one-bay, 1/2 scale unreinforced masonry infilled RC frames and differences in strength and stiffness were evaluated in specimens on which had been applied different retrofitting methods. Test results indicated that the CFRP sheets significantly increased the strength and stiffness of the specimens, and the specimens retrofitted in columns and masonry indicated the most adequate retrofitting methods.

Dynamic Characterisics of the Bridge Retrofitted by Restrainer under Seismic Excitations Considering Pounding Effects (충돌효과를 고려한 Restrainer로 보강된 교량의 지진하중에 대한 거동특성분석)

  • 김상효;마호성;이상우
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.75-86
    • /
    • 1999
  • An analysis model is developed to evaluate the dynamic responses of a bridge system under seismic excitations, in which pounding actions between girders are considered in addition to other phenomena such as nonlinear pier motion, rotational and translational motions of foundations. The model also considers the abutment and restrainers connecting adjacent girders to prevent the unseating failures. Using the developed model, the longitudinal dynamic behaviors of a bridge system are examined for various peak ground accelerations, and the effects of the applied restrainers are investigated. It is found that the restrainers reduce the relative displacement with the shorter clearance length as well as the higher stiffness of the restrainers for moderate excitations. However, in the region with strong excitations the restrainers may yield due to the large relative displacement. Therefore, the extension of support length in addition to restrainers may need to prevent the unseating failure more effectively.

  • PDF

Lateral Bearing Characteristics of Large Diameter Drilled Shafts by Casing Reinforcement Condition Using Non Linear Analysis (비선형해석을 이용한 케이싱 보강조건에 따른 대구경 현장타설말뚝의 수평거동특성)

  • Yoo, Jin-Ho;Moon, In-Jong;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.3
    • /
    • pp.23-33
    • /
    • 2020
  • The lateral bearing characteristics are important factors in the case of large diameter drilled shafts and the measures to increase this are to improve the adjacent ground of the pile to increase the rigidity and to increase the rigidity of the pile itself. There are many suggestions for increasing rigidity by reinforcing casing on the pile, but few studies have been done related to this. Therefore, in this study, the lateral bearing characteristics according to casing reinforcement length were studied for each ground condition using non-linear analysis to evaluate the appropriate casing reinforcement length of the large diameter drilled shafts depending on the ground conditions. As a result, the lateral bearing characteristics of the large diameter drilled shafts are most effective if the casing reinforcement length ratio is 1.2, and depending on the ground conditions, the more loose the ground, the greater the reinforcement effect.

A Study on the Shear Strengthening Characteristic of Reinforced Concrete T-shaped Beams (철근콘크리트 T형보의 전단 보강 특성에 관한 연구)

  • Kim, Jeong Sup;Shin, Yong Seok;Moon, Keum Hwan;Yoo, Myeong Hwan;Lee, Chang Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.10-18
    • /
    • 2012
  • Most of studies on existing strengthening methods were mainly on increase of stiffness and strength of shear strengthening to rectangular beam. As concrete of beam and slab is poured simultaneously on the characteristics of construction in reinforced concrete beam-slab structure, adjacent slab uniformed after hardening has T-shaped beam cross section which makes the flange of beam, enhances the stiffness of the beam and widens the area supporting compressive strength, but available data of flexural behavior of T-shaped beam are lacking. In this research the T-shaped beams would be made, then the reinforced effects and structural properties can be estimated according to the kinds of reinforced materials and reinforced position. The conclusions are shown as below. To sum up the experimental results, The specimen which was reinforce by CB embedded inside of concrete indicated excellent resistive behavior, internal force and stiffness when it was destroyed. The steel plate reinforced specimen of stiffness and internal force were increase but it expressed lower reinforce effects because of lowering anchored force between concrete. Fiber sheet strengthening showed superior effects but the interfacial delamination was found due to the lack of anchored force in destruction. So the measure is needed now.

A Study on the Measurement of Rigidities of Stiffened Plates by Vibration Method (振動法 에 의한 補强平板 의 剛性測定硏究)

  • 김천욱;남준우;원종진;한승봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.174-180
    • /
    • 1985
  • A new measuring technique for the rigidities of stiffened plated is presented. The equations relating the rigidities of stiffened plates and the natural frequencies of a cantilever plate are derived and the rigidities are determined using the measured natural frequencies of the plate. The static deflection tests are conducted for checking the validity of this method. For unstiffened plates the measured rigidities are good agreement with the theoretical values and the experimental results of deflection tests. In the case of stiffened plates the measured rigidities closely matched with the results of deflection tests. It has been also demonstrated that this measuring technique can be utilized in determining the rigidities of arbitrarily stiffened plates.