• Title/Summary/Keyword: 강뼈대구조

Search Result 21, Processing Time 0.022 seconds

3-D Frame Analysis and Design Using Refined Plastic-Hinge Analysis Accounting for Local Buckling (국부좌굴을 고려하는 개선소성힌지해석을 이용한 3차원 강뼈대 구조물 해석 및 설계)

  • Kim, Seung Eock;Park, Joo Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • In this paper, 3-D frame design using refined plastic-hinge analysis accounting for local buckling is developed. This analysis accounts for material and geometric nonlinearities of the structural system and its component members. Moreover, the problem associated with conventional refined plastic-hinge analyses, which do not consider the degradation of the flexural strength caused by local buckling, is overcome. Efficient ways of assessing steel frame behavior including gradual yielding associated with residual stresses and flexure, second-order effect, and geometric imperfections are presented. In this study, a model consisting of the width-thickness ratio is used to account for local buckling. The proposed analysis is verified by the comparison of the LRFD results. A case study shows that local buckling is a very crucial element to be considered in second-order plastic-hinge analysis. The proposed analysis is shown to be an efficient, reliable tool ready to be implemented into design practice.

Ultimate Strength Testing of 3-D Steel Frame Subjected to Non-Proportional Loads (순차하중을 재하한 3차원 강뼈대 구조물의 극한강도 실험)

  • Kim, Seung Eock;Kang, Kyung Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.59-67
    • /
    • 2002
  • The ultimate strength testing of a two-story, single-bay, and sway allowed space steel frame was performed. Considering a majority of large-scale frame tests in the past, only two-dimensional frames were experimentally studied. Therefore, three-dimensional experiment is needed to extend the knowledge of this field. The steel frame subjected to non-proportional vertical and horizontal load was tested. The load-displacement curve of the test frame is provided. The experiment results are useful for verification of the three-dimensional numerical analysis. The results obtained from 3D non-linear analysis using ABAQUS were compared with experimental data.

3-D Frame Design Using Second-Order Plastic-Hinge Analysis Accounting for Lateral Torsional Buckling (횡비틀림좌굴을 고려하는 2차 소성힌지해석을 이용한 3차원 강뼈대 구조물 설케)

  • 김승억;박주수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.117-126
    • /
    • 2002
  • In this paper, 3-D fame design using second-orders plastic-hinge analysis accounting for lateral torsional buckling is developed. This analysis accounts for material and geometric nonlinearities of the structural system and its component members. Moreover, the problem associated with conventional second-order plastic-hinge analyses, which do not consider the degradation of the flexural strength caused by lateral torsional buckling, is overcome. Efficient ways of assessing steel frame behavior including gradual yielding associated with residual stresses and flexure, second-order effect, and geometric imperfections are presented. In this study, a model consisting of the unbraced length and cross-section shape is used to account for lateral torsional buckling. The proposed analysis is verified by the comparison of the LRFD results. A case studs shows that lateral torsional buckling is a very crucial element to be considered in second-order plastic-hinge analysis. The proposed analysis is shown to be an efficient reliable tool ready to be implemented into design practice.

Nonlinear Dynamic Analysis of Space Steel Frames (공간 강뼈대 구조물의 비선헝 동적 해석)

  • Kim Seung-Eock;Cuong Ngo-Huu;Lee Dong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.395-404
    • /
    • 2005
  • This paper presents a reliable numerical procedure for nonlinear time-history analysis of space steel frames subjected to dynamic loads. Geometric nonlinearities of member (P-$\delta$) and frame (P-$\Delta$) are taken into account by the use of stability functions in framed stiffness matrix formulation. The gradual yielding along the member length and over the cross section is included by using a tangent modulus concept and a softening plastic hinge model based on the New-Orbison yield surface. A computer program utilizing the average acceleration method for the integration scheme is developed to numerically solve the equation of motion of framed structure formulated in an incremental form. The results of several numerical examples are compared with those derived from using beam element model of ABAQUS program to illustrate the accuracy and the computational efficiency of the proposed procedure.

Optimization of Direct Design System of Steel Framesusing Advanced Analysis and Genetic Algorithm (고등해석과 유전자 알고리즘을 이용한 강뼈대 구조물의 직접설계시스템의 최적화)

  • Choe, Se-Hyu;Roh, Woo-Hyuk;Kim, Jong-In;Park, Kyung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.203-211
    • /
    • 2006
  • In this paper, the optimization of direct design system of steel frames by genetic algorithm involving advanced analysis are performed. For the analysis of steel frames advanced analysis accounting for geometric nonlinearity and material nonlinearity are executed. The genetic algorithm was used as optimization technique. The weight of structures is treated as the objective function. The constraint functions are defined by load-carrying capacities, deflections, inter-story drifts, and ductility requirement. The effectiveness of the proposed method are verified by comparing the results of the proposed method with those of other method.

Direcy Design of Space Steel Frames Using practical Advanced Analysis (실용적인 고등해석을 이용한 공간 강뼈대구조물의 직접설계)

  • Kim, Seung Eock;Choi, Se Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.153-162
    • /
    • 2001
  • A direct design method of three-dimensional frames using practical advanced analysis is presented. In this method. separate member capacity checks encompassed by the code specifications are not required. because the stability of separate members and the structure as a whole can be rigorously treated in determining the maximum strength of the structures. Advanced analysis accounts for geometric and material nonlinearities. The geometric nonlinearlity is considered by the use of stability function. The material nonlinearity is accounted for using CRC tangent modulus and parabolic function. The load-displacements predicted by the proposed analysis compare well with those given by other approaches. A design example has been presented for a 22-story frame. The analysis results show that the proposed method is suitable for adoption in practice.

  • PDF

Optimization of direct design system of semi-rigid steel frames using advanced analysis and genetic algorithm (고등해석과 유전자 알고리즘을 이용한 반강접 강뼈대 구조물의 직접설계시스템의 최적화)

  • Choi, Se Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.707-716
    • /
    • 2006
  • The optimization of the direct design system of semi-rigid steel frames using advanced analysis and genetic algorithm was presented. Advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. Geometric nonlinearity was determined using stability functions. On the other hand, material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and parabolic function. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. The genetic algorithm was used as the optimization technique. The objective function was assumed as the weight of the steel frame, with the constraint functions accounting for load-carrying capacities, deflections, inter-story drifts and ductility requirement. Member sizes determined by the proposed method were compared with those derived using the conventional method.

Automatic Design of Steel Frame Using Nonlinear Analysis (비선형 해석을 이용한 강뼈대구조물의 자동화설계)

  • Kim, Chang Sung;Ma, Sang Soo;Choi, Se Hyu;Kim, Seung Eock
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.339-348
    • /
    • 2002
  • The study developed an automatic design method of steel frames which uses nonlinear analysis. The geometric nonlinearity was considered using stability functions. Likewise, the transverse shear deformation effect in a beam-column was explained. A direct search method was used as an automatic design technique. The unit value of each part was evaluated using LRFD interaction equation. The member with the largest unit value was replaced one by one with an adjacent larger member selected from the database. The weight of the steel frame was considered as an objective function. On the other hand, load-carrying capacities, deflections, inter-story drifts, and ductility requirement were used as constraint functions. Case studies of a two-dimensional and a three-dimensional two-story frames were presented.

Advanced analysis and optimal design of steel frames accounting for nonlinear behavior of connections (접합부의 비선형 거동을 고려한 강뼈대 구조물의 고등해석과 최적설계)

  • Choi, Se Hyu;Park, Moon Ho;Song, Jae Ho;Lim, Cheong Kweon
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.661-672
    • /
    • 2003
  • The advanced analysis and optimal design of semi-rigid frame were presented. Advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. Geometric nonlinearity was determined using stability functions. On the other hand, material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and parabolic function. The direct search method proposed by Choi and Kim was used as optimization technique. The member with the largest unit value evaluated using the LRFD interaction equation was replaced one by one with an adjacent larger member selected from the database. The objective function was assumed as the weight of steel frame, with the constraint functions accounting for load-carrying capacities, deflections. inter-story drifts, and ductility requirement. Member sizes determined by the proposed method were compared with those derived using the conventional LRFD method.

An Optimum Design of Steel Frames by Second Order Elastic Analysis (2차 탄성해석법에 의한 강뼈대 구조물의 최적설계)

  • Park, Moon-Ho;Jang, Chun-Ho;Kim, Ki-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.123-133
    • /
    • 2006
  • The main objective of this study is to develop an optimization algorithm of framed structures with rigid and various semi-rigid connections using the multilevel dynamic programming and the sequential unconstrained minimization techniques (SUMT). The second-order elastic analysis is performed for steel framed structures. The second order elastic analysis is developed based on nonlinear beam-column theory considering the bowing effect. The following semi-rigid connections are considered; double web angle, top-seat angle and top-seat angle with web angle. We considered the three connection models, such as modified exponential, polynomial and three parameter model. The total weight of the structural steel is used as the objective function in the optimization process. The dimensions of steel cross section are selected as the design variables. The design constraints consist of strength requirements for axial, shear and flexural resistance and serviceability requirements.