• 제목/요약/키워드: 강변 여과

검색결과 132건 처리시간 0.025초

강변여과수 개발부지 지하수의 수리지화학적 특성 -Preliminary results

  • 현승규;우남칠;신우식;함세영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.579-582
    • /
    • 2003
  • This study is a part of the project to identify water-quality degradation mechanism due to Fe and Mn in the river-bank infiltration system in the Changwon city, Kyungsangnam-Do. Results of hydrogeochemical logging indicated that the matrix of the river bank affects groundwater quality, probably related with the hydraulic conductivities of the different layers of bank deposits. Electric conductivity logging data clearly show various layers of groundwater flows. Further studies are necessary to identify mechanisms of increasing dissolved oxygen contents with depths at some monitoring wells.

  • PDF

기능성 스크린 모형실험을 통한 저심도 간접취수 효과 분석 (Analysis of the Effects of Low-Depth Indirect Intake through Laboratory Experiment with Functional Screen)

  • 양정석;정재훈;김일환
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.324-324
    • /
    • 2016
  • 최근 하천에서 취수원을 개발하는 방법 중 수질 측면에서 2차 비용을 저감할 수 있는 간접 취수원에 대한 연구가 활발히 진행되고 있다. 상수원수 및 하천유지용수 등의 취수원을 개발하는데 있어서 강변여과수 개발, 하상여과수 개발, 복류수 개발 등을 적용하여 도입하고 있으나 수량 확보의 불확실성, 유지관리상의 어려움으로 인해 많은 시행착오를 겪고 있다. 이에 본 연구에서는 저심도 간접취수의 안정적인 수량 및 수질 확보를 위해 심도 10m 이내의 제외지 또는 하상을 개착하여 새롭게 고안된 기능성 스크린을 설치하려고 한다. 기존의 간접취수에 비해 안정적이고 지속가능한 수량 확보 및 유지관리에서 유리한 공법을 적용하기 위해 정량적 분석이 가능한 모형실험을 통해 효과 분석을 진행한다.

  • PDF

지속가능 온실 냉난방을 위한 강변여과수 취수 및 회수시스템 개발 (Development of Riverbank Filtration Water Supply and Return System for Sustainable Green House Heating and Cooling)

  • 조용;김대근;김형수;문종필
    • 한국유체기계학회 논문집
    • /
    • 제15권2호
    • /
    • pp.20-29
    • /
    • 2012
  • The green house on the waterfront is air-conditioned by a water-source heat pump system with riverbank filtration water. In order to supply riverbank filtration water in alluvium aquifer, the riverbank filtration facility for water intake and recharge, two pumping wells and one recharge well, has been constructed. The research site in Jinju, Korea was chosen as a good site for riverbank filtration water supply by the surface geological survey, electrical resistivity soundings, and borehole surveys. In the results of two boreholes drilling at the site, it was revealed that the groundwater table is about 3 m under the ground, and that the sandy gravel aquifer layer in the thickness of 6.5 m and 3.5 m occurs at 5 m and 7 m in depth below the ground level respectively. To prevent the recharge water from affecting the pumped water which might be used as heat source or sink, the distance between pumping and recharge wells is designed at least 70 m with a quarter of recharged flow rate. It is predicted that the transfer term, the recharge water affects the pumping well, is over 6 months of heating season. Hydrogeological simulation and underground water temperature measurement have been carried out for the pumping and recharge well positions in order to confirm the capability of sustainable green house heating and cooling.

친수지역 강변여과수 열원을 활용한 냉난방시스템 개발 (Development of Water-Source Heat Pump System Using Riverbank Filtration Water on the Waterfront)

  • 조용;김대근;문종필
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.201.2-201.2
    • /
    • 2011
  • A water-source heat pump system has been developed for cooling and heating of a green house on the waterfront in Jinju. In order to supply a heat source/sink of water in alluvium aquifer to the heat pump system, the riverbank filtration facility (two pumping wells and one recharge well) for water intake and injection has been constructed. To pump and recharge water sufficiently, the geometric design such as depth and diameter for the wells have been completed, and details of the well such as slot size and length of the screen and filter pack size have been designed based on the practical and theoretical design method including D30 technique. For the investigation of the hydrogeological characteristics, step-drawdown test, long-term pumping test, and recovery test have been carried out for two developed pumping wells. Step-drawdown test has been performed on 4 step flowrates of 150, 300, 450, $600m^3$/day for 1 hour, and long-term pumping test on flowrate of $500m^3$/day for 24 hours, and recovery test for 6 hours. Since the underground water filtrated by riverbank is flowing smoothly into the well, the water level goes down slightly for the long-term test. Consequently, the stable pumping flowrate for two pumping well has been predicted at least over $1,647m^3$/day which is larger than the flowrate of $1,000m^3$/day for a 60 RT heat pump system.

  • PDF

충적층 입자 특성을 고려한 수평집수정 굴착 속도 추정 (Estimation of Drilling Velocity for Horizontal Wells Based on Alluvial Sediment Characteristics)

  • 김규범;이정운;이치형
    • 지질공학
    • /
    • 제25권2호
    • /
    • pp.273-280
    • /
    • 2015
  • 강변여과수의 수평집수정 시공시 불균질성 지층에 의한 굴착 지연 등은 전체 굴착 공정에 영향을 미칠 수 있다. 본 연구에서는 안성천 지역에서 시공 중인 수평집수정의 굴착 과정에서 심도별로 취득된 입도분석 자료, 균등계수, 곡률계수를 활용하여 실제 굴착 속도를 추정하는 방안을 제시하였다. 균등계수와 곡률계수를 입력인자로 사용한 회귀식을 도출한 후 타 수평집수정에 적용한 결과, 조립질이면서 분급이 양호한 지층에 추정식이 잘 맞는 것으로 나타났다. 본 연구 결과는 중소규모의 하천을 대상으로 개발된 만큼, 향후 대하천 주변의 굴착 정보를 활용하여 추정식을 보완한다면 보다 정확한 설계 및 효율적인 시공 관리가 가능할 것이다.

방사형 집수정의 취수량 추정식의 적용성 및 한계점 고찰 (Applicability and Limitations of Groundwater Yield Estimation Equations for Radial Collector Wells)

  • 김규범;이호정;최명락
    • 지질공학
    • /
    • 제28권3호
    • /
    • pp.443-453
    • /
    • 2018
  • 하천변에서의 대용량 강변여과수 개발은 방사형 집수정을 통하여 주로 이루어지는데, 초기 취수량의 산정을 위한 다양한 경험식이 개발되어 왔다. 안성천에 설치된 방사형 집수정을 대상으로 경험식을 활용한 초기 취수량을 추정한 결과, Babac, Kordas 및 Petrovic 방법은 실제 취수량 $6,124m^3/d$과 유사하나 Milojevic 방법은 상대적으로 차이가 큰 것으로 나타났다. 이는 각 방법별 적용 조건의 차이에 기인한 것으로 보인다. 각 방법의 입력 인자인 하천에서 집수정까지의 거리, 수평정의 개수, 대수층의 두께, 수평정의 길이, 수리전도도 등의 변화에 따른 추정식의 적용성을 분석한 결과, 각 방법별로 일정 조건하에서의 추정식 사용이 요구되며, 특히 수리전도도는 취수량 결정에 매우 중요하므로 정확한 산정이 필요함을 보여준다.

강변여과수 시설에서의 지열에너지 활용 가능성 평가 (Assessment for geothermal energy utilization in the riverbank filtration facility)

  • 신지연;김경호;배광옥;이강근;정우성;석희준;김형수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.485-488
    • /
    • 2007
  • Riverbank filtration is a kind of artificial aquifer recharge for the fresh water supply. By construction of several production wells penetrating the riverbank, surface water withdrawn from the river would pass riverbed. This extracted water is well known to be cooler than surface water in summer and warmer than surface water in winter, showing more constant water temperature. This characteristic of extracted water is applied to geothermal energy utilization. Prediction of the annual temperature variation of filtrated water is the major concern in this study. In Daesan-myeon, Changwon-si, Gyeongsangnam-do, South Korea, riverbank filtration facility has been on its operation for municipal water supply and thermal energy utilization since 2006. Appropriate hydraulic and thermal properties were estimated for flow and heat transfer modeling with given pumping rate and location. With the calibrated material properties and boundary conditions, we numerically reproduced measured head and temperature variation with acceptable error range. In the numerical simulation, the change of saturation ratio and river stage caused by rainfall was calculated and the resulting variation of thermal capacity and thermal conductivity was considered. Simulated temperature profiles can be used to assess the possible efficiency of geothermal energy utilization using riverbank filtration facility. Influence of pumping rate, pumping location on the extracted water temperature will be studied.

  • PDF

강변여과에서의 은나노입자의 영향 : 실험실규모 컬럼 실험 (Effect of silver nanoparticles on the performance of riverbank filtration: Column study)

  • 이동현;노진형;김현철;최재원;최일환;맹승규
    • 상하수도학회지
    • /
    • 제29권1호
    • /
    • pp.77-88
    • /
    • 2015
  • Soil column experiments were evaluated effects of silver nanoparticles (i.e., 0, 2.5, 5, and 10 mg/L) on the microbial viability which is strongly associated with the degradation of organic matter, pharmaceutically active compounds(PhACs) and biological oxidation of nitrogenous compounds during river bank filtration. The addition of silver nanoparticles resulted in almost no change in the aqueous matrix. However, the intact cell concentration decreased with addition of silver nanoparticles from 2.5 to 10 mg/L, which accounted for 76% to 82% reduction compared to that of control (silver nanoparticles free surface water). The decrease in adenosine triphosphate was more pronounced; thus, the number and active cells in aqueous phase were concurrently decreased with added silver nanoparticles. Based on the florescence excitation-emission matrix and liquid chromatograph - organic carbon detection analyses, it shows that the removal of protein-like substances was relatively higher than that of humic-like substances, and polysaccharide was substantially reduced. But the extent of those substances removed during soil passage was decreased with the increasing concentration of silver nanoparticles. The attenuation of ionic PhACs ranged from 55% to 80%, depending on the concentration of silver nanoparticles. The attenuation of neutral PhACs ranged between 72% and 77%, which was relatively lower than that observed for the ionic PhACs. The microbial viability was affected by silver nanoparticles, which also resulted in inhibition of nitrifiers.

낙동강 하류 갈전지역에서의 강변여과수 수질평가 (Evaluation of Bank Filtrate Water Quality in Galjon, the Downstream of the Nakdong River)

  • 이수영;정태학
    • 상하수도학회지
    • /
    • 제17권4호
    • /
    • pp.487-494
    • /
    • 2003
  • In this research, water qualities of river water and bank-filtrate were compared for six months including winter season. The location studied was Galjon area, the downstream of the Nakdong river. The well for bank-filtrate was installed 40 m apart from riverside. Main analytic results of bank-filtrate and river water were summarized as followings; the average concentrations in bank-filtrate were turbidity 0.8NTU, TN 0.4mg/l, $BOD_5$, 0.1mg/l, $KMnO_4$ consumption 1.6mg/l, heterotrophic bacteria 350cfu/ml, Fe 0.5mg/l, Mn 0.99mg/l while the average concentrations in river water were turbidity 6.1NTU, TN 3.9mg/l, $BOD_5$, 3.6mg/l, $KMnO_4$ consumption 11mg/l, heterotrophic bacteria 1,640cfu/ml, Fe 0.28mg/l, Mn 0.04mg/l. Water quality of bank-filtrate was mostly shown a good results than it of river water excepting Fe and Mn. In even basic constituents such as water temperature and pH, bank-filtrate was very settled while river water was extraordinary changable and high. In case of nitrogen, especially, total nitrogen of river water was 3.9mg/l while it of bank-filtrate was 0.4mg/l and its reduction was very high. The reason is that $NH^+_4-N$ among total nitrogen in the river water is nitrified and then denitrified in soil layer when it is pumped up as bank-filtrate. But Fe and Mn caused by the characteristics of soil was very high in bank-filtrate while Mn in river water was particularly very low and settled. As the distance between riverside and well was longer, concentration of Fe and Mn may be went up while its bacteria may be reduced.

배후지 지하수위를 고려한 인공신경망 기반의 수평정별 취수량 결정 기법 (Determination of the Groundwater Yield of horizontal wells using an artificial neural network model incorporating riverside groundwater level data)

  • 김규범;오동환
    • 지질공학
    • /
    • 제28권4호
    • /
    • pp.583-592
    • /
    • 2018
  • 최근들어 방사형 집수정 방식의 대용량 강변여과수 개발에 따른 배후지의 지하수위 강하에 대한 우려가 존재하고 있다. 본 연구에서는 안성천의 방사형 집수정을 대상으로 Modflow를 활용하여 수평정의 취수량에 따른 배후지의 수위 강하를 예측하였으며, 이 데이터를 기반으로 배후지 수위 강하가 최소가 되는 수평정별 취수량을 결정하는 다층퍼셉트론 기반의 인공신경망 모델을 개발하였다. 하천 방향으로 굴착된 수평정 HW-6의 취수량을 높이는 것이 OW-7 및 OB-11 관측정의 지하수위를 높게 유지하는데 필요한 것으로 평가되었다. 또한, 모델 입력 자료의 수 및 훈련과 검증 자료의 분류는 인공신경망 모델 결과에 영향을 미치므로 유의하여야 한다. 향후 현장의 실제 운영 자료와 수치모델의 비교를 통하여 인공신경망 모델을 보완한다면 배후지의 지하수 관리에 기여할 것으로 본다.