• Title/Summary/Keyword: 강변 여과

Search Result 132, Processing Time 0.028 seconds

강변여과수 개발부지 지하수의 수리지화학적 특성 -Preliminary results

  • 현승규;우남칠;신우식;함세영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.579-582
    • /
    • 2003
  • This study is a part of the project to identify water-quality degradation mechanism due to Fe and Mn in the river-bank infiltration system in the Changwon city, Kyungsangnam-Do. Results of hydrogeochemical logging indicated that the matrix of the river bank affects groundwater quality, probably related with the hydraulic conductivities of the different layers of bank deposits. Electric conductivity logging data clearly show various layers of groundwater flows. Further studies are necessary to identify mechanisms of increasing dissolved oxygen contents with depths at some monitoring wells.

  • PDF

Analysis of the Effects of Low-Depth Indirect Intake through Laboratory Experiment with Functional Screen (기능성 스크린 모형실험을 통한 저심도 간접취수 효과 분석)

  • Yang, Jeong Seok;Jeong, Jae Hoon;Kim, Il Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.324-324
    • /
    • 2016
  • 최근 하천에서 취수원을 개발하는 방법 중 수질 측면에서 2차 비용을 저감할 수 있는 간접 취수원에 대한 연구가 활발히 진행되고 있다. 상수원수 및 하천유지용수 등의 취수원을 개발하는데 있어서 강변여과수 개발, 하상여과수 개발, 복류수 개발 등을 적용하여 도입하고 있으나 수량 확보의 불확실성, 유지관리상의 어려움으로 인해 많은 시행착오를 겪고 있다. 이에 본 연구에서는 저심도 간접취수의 안정적인 수량 및 수질 확보를 위해 심도 10m 이내의 제외지 또는 하상을 개착하여 새롭게 고안된 기능성 스크린을 설치하려고 한다. 기존의 간접취수에 비해 안정적이고 지속가능한 수량 확보 및 유지관리에서 유리한 공법을 적용하기 위해 정량적 분석이 가능한 모형실험을 통해 효과 분석을 진행한다.

  • PDF

Development of Riverbank Filtration Water Supply and Return System for Sustainable Green House Heating and Cooling (지속가능 온실 냉난방을 위한 강변여과수 취수 및 회수시스템 개발)

  • Cho, Yong;Kim, Dae-Geun;Kim, Hyoung-Soo;Moon, Jong-Pil
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.20-29
    • /
    • 2012
  • The green house on the waterfront is air-conditioned by a water-source heat pump system with riverbank filtration water. In order to supply riverbank filtration water in alluvium aquifer, the riverbank filtration facility for water intake and recharge, two pumping wells and one recharge well, has been constructed. The research site in Jinju, Korea was chosen as a good site for riverbank filtration water supply by the surface geological survey, electrical resistivity soundings, and borehole surveys. In the results of two boreholes drilling at the site, it was revealed that the groundwater table is about 3 m under the ground, and that the sandy gravel aquifer layer in the thickness of 6.5 m and 3.5 m occurs at 5 m and 7 m in depth below the ground level respectively. To prevent the recharge water from affecting the pumped water which might be used as heat source or sink, the distance between pumping and recharge wells is designed at least 70 m with a quarter of recharged flow rate. It is predicted that the transfer term, the recharge water affects the pumping well, is over 6 months of heating season. Hydrogeological simulation and underground water temperature measurement have been carried out for the pumping and recharge well positions in order to confirm the capability of sustainable green house heating and cooling.

Development of Water-Source Heat Pump System Using Riverbank Filtration Water on the Waterfront (친수지역 강변여과수 열원을 활용한 냉난방시스템 개발)

  • Cho, Yong;Kim, Dea Geun;Moon, Jong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.201.2-201.2
    • /
    • 2011
  • A water-source heat pump system has been developed for cooling and heating of a green house on the waterfront in Jinju. In order to supply a heat source/sink of water in alluvium aquifer to the heat pump system, the riverbank filtration facility (two pumping wells and one recharge well) for water intake and injection has been constructed. To pump and recharge water sufficiently, the geometric design such as depth and diameter for the wells have been completed, and details of the well such as slot size and length of the screen and filter pack size have been designed based on the practical and theoretical design method including D30 technique. For the investigation of the hydrogeological characteristics, step-drawdown test, long-term pumping test, and recovery test have been carried out for two developed pumping wells. Step-drawdown test has been performed on 4 step flowrates of 150, 300, 450, $600m^3$/day for 1 hour, and long-term pumping test on flowrate of $500m^3$/day for 24 hours, and recovery test for 6 hours. Since the underground water filtrated by riverbank is flowing smoothly into the well, the water level goes down slightly for the long-term test. Consequently, the stable pumping flowrate for two pumping well has been predicted at least over $1,647m^3$/day which is larger than the flowrate of $1,000m^3$/day for a 60 RT heat pump system.

  • PDF

Estimation of Drilling Velocity for Horizontal Wells Based on Alluvial Sediment Characteristics (충적층 입자 특성을 고려한 수평집수정 굴착 속도 추정)

  • Kim, Gyoo-Bum;Lee, Jeong-Woon;Lee, Chi-Hyung
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.273-280
    • /
    • 2015
  • Delays in horizontal well drilling when encountering heterogeneous sediments can have negative effects on the construction process at a riverbank filtration site. Grain size analysis, including calculation of the coefficient of uniformity and the coefficient of curvature, was conducted on soil samples collected at each drilling depth during the process of drilling horizontal wells. These results were then used to develop a linear equation for estimating drilling velocity using the coefficient of uniformity and the coefficient of curvature as inputs. Testing of the linear equation in other horizontal wells indicates that the equation is most appropriate for coarse-sand-sized and well-sorted sediment. Because this study was conducted in a region with small- to medium-sized streams, more data are needed from larger rivers to modify the general equation. Our results will provide better estimates of drilling velocity, in turn enabling more detailed design and more effective construction management at riverbank filtration sites.

Applicability and Limitations of Groundwater Yield Estimation Equations for Radial Collector Wells (방사형 집수정의 취수량 추정식의 적용성 및 한계점 고찰)

  • Kim, Gyoo-Bum;Lee, Ho-Jeong;Choi, Myoung-Rak
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.443-453
    • /
    • 2018
  • Radial collector wells have been widely used for large-capacity groundwater development in riparian environments, and many empirical equations have been developed for initial estimates of groundwater yield. We compare the initial yield estimates produced by several empirical equations for the radial collector well at the Anseongcheon stream site. The results of Babac's, Kordas', and Petrovic's methods are similar to the actual yield of $6,124m^3/d$, but Milojevic's method predicts a higher yield than the observed value. The conditions under which these methods are applicable explain the observed differences between the actual and estimated yields. The applicability of empirical equations is evaluated by changing the input variables of distance from well to river, number of horizontal wells, thickness of aquifer, length of horizontal well, and hydraulic conductivity. The results indicate that the conditions under which each method is applicable must be considered carefully when estimating groundwater yield, and hydraulic conductivity must be estimated accurately.

Assessment for geothermal energy utilization in the riverbank filtration facility (강변여과수 시설에서의 지열에너지 활용 가능성 평가)

  • Shin, Ji-Youn;Kim, Kyung-Ho;Bae, Gwang-Ok;Lee, Kang-Kun;Jung, Woo-Sung;Suk, Hee-Jun;Kim, Hyeong-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.485-488
    • /
    • 2007
  • Riverbank filtration is a kind of artificial aquifer recharge for the fresh water supply. By construction of several production wells penetrating the riverbank, surface water withdrawn from the river would pass riverbed. This extracted water is well known to be cooler than surface water in summer and warmer than surface water in winter, showing more constant water temperature. This characteristic of extracted water is applied to geothermal energy utilization. Prediction of the annual temperature variation of filtrated water is the major concern in this study. In Daesan-myeon, Changwon-si, Gyeongsangnam-do, South Korea, riverbank filtration facility has been on its operation for municipal water supply and thermal energy utilization since 2006. Appropriate hydraulic and thermal properties were estimated for flow and heat transfer modeling with given pumping rate and location. With the calibrated material properties and boundary conditions, we numerically reproduced measured head and temperature variation with acceptable error range. In the numerical simulation, the change of saturation ratio and river stage caused by rainfall was calculated and the resulting variation of thermal capacity and thermal conductivity was considered. Simulated temperature profiles can be used to assess the possible efficiency of geothermal energy utilization using riverbank filtration facility. Influence of pumping rate, pumping location on the extracted water temperature will be studied.

  • PDF

Effect of silver nanoparticles on the performance of riverbank filtration: Column study (강변여과에서의 은나노입자의 영향 : 실험실규모 컬럼 실험)

  • Lee, Donghyun;No, Jin-Hyeong;Kim, Hyun-Chul;Choi, Jae-Won;Choi, Il-Hwan;Maeng, Sungkyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.77-88
    • /
    • 2015
  • Soil column experiments were evaluated effects of silver nanoparticles (i.e., 0, 2.5, 5, and 10 mg/L) on the microbial viability which is strongly associated with the degradation of organic matter, pharmaceutically active compounds(PhACs) and biological oxidation of nitrogenous compounds during river bank filtration. The addition of silver nanoparticles resulted in almost no change in the aqueous matrix. However, the intact cell concentration decreased with addition of silver nanoparticles from 2.5 to 10 mg/L, which accounted for 76% to 82% reduction compared to that of control (silver nanoparticles free surface water). The decrease in adenosine triphosphate was more pronounced; thus, the number and active cells in aqueous phase were concurrently decreased with added silver nanoparticles. Based on the florescence excitation-emission matrix and liquid chromatograph - organic carbon detection analyses, it shows that the removal of protein-like substances was relatively higher than that of humic-like substances, and polysaccharide was substantially reduced. But the extent of those substances removed during soil passage was decreased with the increasing concentration of silver nanoparticles. The attenuation of ionic PhACs ranged from 55% to 80%, depending on the concentration of silver nanoparticles. The attenuation of neutral PhACs ranged between 72% and 77%, which was relatively lower than that observed for the ionic PhACs. The microbial viability was affected by silver nanoparticles, which also resulted in inhibition of nitrifiers.

Evaluation of Bank Filtrate Water Quality in Galjon, the Downstream of the Nakdong River (낙동강 하류 갈전지역에서의 강변여과수 수질평가)

  • Lee, Sooyoung;Chung, Taihak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.487-494
    • /
    • 2003
  • In this research, water qualities of river water and bank-filtrate were compared for six months including winter season. The location studied was Galjon area, the downstream of the Nakdong river. The well for bank-filtrate was installed 40 m apart from riverside. Main analytic results of bank-filtrate and river water were summarized as followings; the average concentrations in bank-filtrate were turbidity 0.8NTU, TN 0.4mg/l, $BOD_5$, 0.1mg/l, $KMnO_4$ consumption 1.6mg/l, heterotrophic bacteria 350cfu/ml, Fe 0.5mg/l, Mn 0.99mg/l while the average concentrations in river water were turbidity 6.1NTU, TN 3.9mg/l, $BOD_5$, 3.6mg/l, $KMnO_4$ consumption 11mg/l, heterotrophic bacteria 1,640cfu/ml, Fe 0.28mg/l, Mn 0.04mg/l. Water quality of bank-filtrate was mostly shown a good results than it of river water excepting Fe and Mn. In even basic constituents such as water temperature and pH, bank-filtrate was very settled while river water was extraordinary changable and high. In case of nitrogen, especially, total nitrogen of river water was 3.9mg/l while it of bank-filtrate was 0.4mg/l and its reduction was very high. The reason is that $NH^+_4-N$ among total nitrogen in the river water is nitrified and then denitrified in soil layer when it is pumped up as bank-filtrate. But Fe and Mn caused by the characteristics of soil was very high in bank-filtrate while Mn in river water was particularly very low and settled. As the distance between riverside and well was longer, concentration of Fe and Mn may be went up while its bacteria may be reduced.

Determination of the Groundwater Yield of horizontal wells using an artificial neural network model incorporating riverside groundwater level data (배후지 지하수위를 고려한 인공신경망 기반의 수평정별 취수량 결정 기법)

  • Kim, Gyoo-Bum;Oh, Dong-Hwan
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.583-592
    • /
    • 2018
  • Recently, concern has arisen regarding the lowering of groundwater levels in the hinterland caused by the development of high-capacity radial collector wells in riverbank filtration areas. In this study, groundwater levels are estimated using Modflow software in relation to the water volume pumped by the radial collector well in Anseongcheon Stream. Using the water volume data, an artificial neural network (ANN) model is developed to determine the amount of water that can be withdrawn while minimizing the reduction of groundwater level. We estimate that increasing the pumping rate of the horizontal well HW-6, which is drilled parallel to the stream direction, is necessary to minimize the reduction of groundwater levels in wells OW-7 and OB-11. We also note that the number of input data and the classification of training and test data affect the results of the ANN model. This type of approach, which supplements ANN modeling with observed data, should contribute to the future groundwater management of hinterland areas.