• Title/Summary/Keyword: 강도 평가

Search Result 11,003, Processing Time 0.037 seconds

Evaluation of the Habitat Suitability of the Hantan Dam Reservoir (한탄강 댐 저수지 생태환경 서식적합도지수 산정)

  • Gang, Hyeong-Sik;Bang, Seok-Bae;Park, Dae-Ryong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.517-517
    • /
    • 2017
  • 본 연구는 저수지 주변 생태환경 서식적합도지수를 산정하여 댐 건설 전후의 생태환경을 정량적으로 평가하고자 하였다. 생태적 가치에 대한 평가 모델 고려 인자로는 고도, 경사 및 각과 같은 물리적 요인, 산림 지형, 식생 유형, 연령층, DBH 등급과 같은 초목 요인들, 그리고 생태 자연상태, 식생 보존 분류 및 야생 생물 출현 지점과 같은 서식지 요인을 이용하였다. 각 요소의 생태학적 기능을 고려한 평가기준을 정량화하여 개발된 모델은 한탄강 댐 저수지에 적용하였다. 그 결과 댐 건설 이전의 생태 가치가 100이라고 가정했을 때, 댐 건설 이후에 물리적 요소는 83.9, 초목요소는 92.4, 그리고 서식처 요소는 84.5로 저하되었다. 전반적인 생태 가치는 건설 후 86.9 %, 13.1 % 감소하였다. 또한, 평가 요소를 쌓은 방법을 통해 생태학적으로 건강한 지역을 선정하였다. 본 연구결과는 댐 저수지에 생태 복원 계획을 수립하는 데 유용할 것으로 판단된다.

  • PDF

A Simple Evaluation Method for Shear Strength Decreasing with Increasing Number of Cyclic Loading (반복하중 증가에 따라 감소하는 전단강도의 간이 평가법)

  • Song, Byungwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.4
    • /
    • pp.57-65
    • /
    • 2007
  • Earthquake is one of the factors to affect the stability of geotechnical structures. Numerous past earthquakes have shown that earthquakes have taught that damage of soil structures could occur on fine soils as well as coarse soils. For that reason, earthquake-induced decreasing tendency for strength on both coarse and fine soils has been investigated using direct simple shear (DSS) tests in laboratory. Based on the testing results the decreasing tendency for strength on coarse and fine soils is clearly identified in terms of the concept of volume decrease potential and plasticity index, respectively. Most of the soils except the weathered soil have shown similar reduction tendency of strength with the increasing number of cycles. Liquefaction strength of coarse and fine soils appears to decrease with the increment of volume decrease potential and the decrement of plasticity index, respectively. Reduction of strength on the weathered soil is particularly remarkable rather than others, which might be owing to the collapse phenomenon. From the DSS test results for soils, proposed is a simple method to evaluate strength decrement with the increasing number of cycles, and it can help estimate decrement of strength with the number of cycles easily.

  • PDF

Assessment of the Rock Strength using Borehole Acoustic Scanner (초음파 주사검층 방법을 이용한 암반강도 평가에 관한 연구)

  • Lee Kwangbae;Heo Seung;Song Young-Soo;Song Seungyup;Kim Haksoo
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.4
    • /
    • pp.225-233
    • /
    • 2004
  • The purpose of this study is to provide the geo-technical information by assessment of the in-situ rock strength using the reflected wave energy and travel time data acquired by the borehole acoustic scanner. In order to compare and analyze the relationship between the uniaxial compressive strength and the reflected wave energy, the laboratory test and the borehole acoustic scanning were conducted for the set of specimens, such as mortar, concrete, and rock samples which have different rock type. Finally, we verified the applicability of the reflected wave energy acquired by the borehole acoustic scanner to quantitatively estimate the in-situ rock strength.

Safety Assessment of Double Skin Hull Structure against Ultimate Bending and Fatigue Strength (이중선각구조 선박의 최종굽힘강도와 피로강도에 대한 안전성 평가)

  • P.D.C. Yang;Joo-Sung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.93-102
    • /
    • 1992
  • In this paper presented is the reliability analysis of a double skinned hull structure against the ultimate bending moment and fatigue strength under longitudinal bending. The ultimate bending strength is obtained through the beam-column approach in which the load-end shortening curves(stress-strain curves) of stiffened plates under mini-axial compression are derived using the concept of plastic hinge collapse. The fatigue damage only is considered as fatigue failure for which the Miner's damage rule is employed. Assessed are fatigue reliability for the possible joint types found at deck structure. Also included is the reliability analysis of a series system of which elements are ultimate and fatigue failure.

  • PDF

Study on the Statistical Quality Evaluation Using Indentation Geometry and Dynamic Resistance Of Inverter DC Resistance Spot Welding (저항 점 용접된 자동차 차체용 DP 590 강재의 압흔 형상과 동저항을 이용한 통계적 품질 평가에 대한 연구)

  • An, Ju-Seon;Lee, Kyung-Won;Kim, Jong-Hyun;Lee, Bo-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.628-631
    • /
    • 2010
  • 환경문제에 대한 관심으로 자동차에 대한 경량화가 요구되는 동시에 안전규제가 강화 되고 있어, 높은 인장강도를 가지는 고강도 강의 차체 적용 비율이 점차 증가하고 있다. 또한, 자동차 1대를 조립하기 위한 저항 점용접 횟수를 줄이고, 용접부에 충격안정성을 확보하기 위한 관심이 고조되고 있다. 따라서, 국내 자동차 산업에서 용접부의 신뢰성을 보장하기 다양한 비파괴 검사를 적용하고 있으며, 생산 공정에 적용하고 있다. 그중에서 용접 전극 사이에서 동저항(Dynamic resistance, 용접 공정중모재의 저항값의 변화)을 계측하여 용접성을 평가하는 방법이 제시되고, 차체 조립공정 중에 적용하려는 시도가 이루어지고 있다. 본 연구에서는 자동차 차체용 냉간 압연강판(590MPa dual-phase steel)을 인버터 DC 저항 점 용접하여, 용접전극 사이에서 동저항을 측정 하였다. 용접성은 인장전단 강도로 평가하였고, 용접 공정 변수는 용접 전류, 용접 시간, 가압력을 선정하였다. 동저항 그래프의 ${\alpha}$-peak와 ${\beta}$-peak값을 인장전단 강도에 따라 회귀 분석하여, 동저항에 따른 인장전단 강도를 예측하였다. 추가적으로, 용접부의 외관 형상 중에 압흔 깊이와 압흔자국 지름에 대한 회귀분석을 실시하였으며, 용접부 형상에 대한 신뢰성을 부여하였다.

  • PDF

Compressive Strength Evaluation of Longitudinally Stiffened Octangular-Section Modular Shell Towers (종방향으로 보강된 팔각단면 쉘기둥의 축방향 압축강도 평가)

  • Choi, Byung Ho;Kim, Jung Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.135-140
    • /
    • 2016
  • This paper examined the uniaxial compressive strength of longitudinally-stiffened octangular modular section towers. Through a series of comparative studies, the 3-dimensional finite element analysis results were considerably larger than the nominal strength values based on Eurocode. Therefore, the design strength equations are simply applicable to the design of the octangular-section tower module, but a more rational method will be needed to properly predict the capacity.

Tenderness Comparision of Korean and Imported Beef Using Time - Intensity Metho dology (시간-강도 분석에 따른 한우육과 수입우육의 연한정도 비교)

  • 차경희
    • Korean journal of food and cookery science
    • /
    • v.12 no.2
    • /
    • pp.123-128
    • /
    • 1996
  • Tenderness of loin and brisket muscles of Korean and imported beef was measured using the Time-lntensity (Tl) techniques. From the Tl curve, the Rx, Imax, Dur and AUC parameters were determined. For the loin muscle, Korean beef showed significantly (p < 0.05) larger Rx, Imax, and AUC. This result represents Korean beef loin has higher tenderness than that of imported one. For the brisket muscle, imported beef show.

  • PDF

Wood Quality and Strength Properties of Old Structural Members (목조건축 해체 고목재의 재질특성 및 강도성능)

  • Hwang, Kweonhwan;Park, Byeongsu;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.36-44
    • /
    • 2008
  • It is necessary to assess wood quality and strength of the clear specimens from used members in old wooden structures for the reuse of old members on the same structure or a new structure. Wood species classification by microscope observation of each wood member that was used in truss cord and temple, and several physical and strength tests by the specification of present KS standards were conducted to compare with some references. From the comparison of strengths with references, Korean larch gives relatively better wood quality and mechanical properties than other wood species. No significant deterioration of cell wall was found by microscopic observation for the sound wood part that was selected visually. Tensile specimens with 3 mm in thickness on the middle span showed greater strength than 5 mm thick specimens, which explains that dimension of tensile specimen should be examined for evaluating precise tensile strength properties. Other tests, compression, shear, and bending, are adoptable for each strength properties. Test methods for the evaluation of basic strengths and fastener connections for old wood species should be further examined.

Evaluation on In-Site Compressive Strength of High-Strength Concrete Mass Elements under Cold Weather (혹한기 고강도 콘크리트 매스부재의 현장 압축강도 평가)

  • Mun, Jae-Sung;Yang, Keun-Hyeok;Kim, Do-Gyeu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.589-595
    • /
    • 2015
  • This study evaluated the in-site compressive strength development of high-strength concrete developed for the mass structures under cold weather condition. Two mock-up wall specimens with $2.0{\times}1.2{\times}1.0m$ in dimension were cured under an average temperature of $5^{\circ}C$. Core strengths measured at different locations of the mock-up walls were compared with the companion standard cylinder strengths. Test results revealed that the core strength of mock-up walls at an age of 3 days is higher by approximately 30% than the companion cylinder strength because of the high curing temperature effect generated from the heat of hydration of cementitious materials. Furthermore, comparisons with the prediction models based on maturity function confirmed that the effect of hydration heat on the curing temperature increase needs to be reflected to reasonably evaluate the on-site compressive strength development of concrete for mass elements.

Evaluation of Strength Reduction Factors using Smooth Hysteretic Behavior (완만한 곡선형 이력거동을 이용한 강도감소계수의 평가)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.49-60
    • /
    • 2010
  • The actual hysteretic behavior of structural elements and systems is smooth. Smooth hysteretic behavior is more representative of actual behavior than bi-linear or piece-wise linear stiffness degrading models. The strength reduction factor in seismic design is used to reduce the elastic strength demand to design levels. In this study, the effect of smoothness on the strength reduction factor is evaluated for several smooth hysteretic systems subjected to near-fault and far-fault earthquakes. For design purposes, a simple expression of the strength reduction factor considering hysteretic smoothness and earthquake characteristics, represented as near-fault and far-fault earthquakes, is proposed. The strength reduction factors calculated by the proposed simple formulation are more similar to the factors directly obtained from inelastic response spectrum analyses than those calculated by several existing formulas.