• Title/Summary/Keyword: 강도평가시스템

Search Result 706, Processing Time 0.035 seconds

An Experimental Study of Strength Evaluation in Frozen Soils according to Direct Shear Box Systems (직접전단상자 시스템에 따른 동결토의 강도 평가에 관한 실험적 연구)

  • Kim, Sang Yeob;Kim, YoungSeok;Lee, Jangguen;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.3
    • /
    • pp.5-14
    • /
    • 2017
  • Experimental study on strength characteristics of frozen soils is necessary for the safety evaluation of design and construction in cold region. The objective of this study is to evaluate the direct shear strength of frozen soils obtained from traditional system (Type-1), system with roller on the upper shear box (Type-2), and system with fixed upper shear box separated from bottom shear box (Type-3). Specimens mixed with sand, silt, and water are frozen to $-5^{\circ}C$, and then direct shear tests are conducted under the normal stress of 5, 10, 25, and 50 kPa. Experimental results show that the upper shear box of Type-1 touches the bottom shear box due to the rotation of the upper shear box. The shear strength obtained from Type-2 is overestimated because the preventing rotation force is added to shear force. Type-3 may acquire the only strength of the specimen, and shear strain at peak shear strength is similar to that at the beginning of vertical displacement occurrence. In addition, internal friction angle and cohesion at both peak and residual stresses in Type-3 are smaller than those of Type-2. This study shows that high strength specimens including frozen soils can be effectively evaluated using improved shear box system such as Type-3.

Development of Strength and Durability Estimation System for Power Transmission Cylindrical Gears (원통치차의 강도평가 시스템 개발연구)

  • 정태형;변준형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.112-119
    • /
    • 1993
  • A strength and durability estimation system of involute cylindrical gears which are commonly used as power transmission devices is developed on the personal computer, which analyzed and/or evaluates the gear design and the service performance at the point of view of strength and durability. The typical considerations are the bending strength and the sunface durability, and the strength and durability estimations are carried out using the reliable standards of AGMA&ISO. In addition, the finite element analysis (FEM) of tooth bending stress is conducted in order to compare the real maximum stress with the estimaed bending stress by the standard. Therefore, the system is built so that the variables or factors considered differently in those standards and the strength & durability are appraised seperately by each method, and a series of the estimation processes is integrated into the system can be used in the initial design at the view point of strength and durability. And it is useful to the purpose of the trouble-shooting of gear system and the purpose of introducing the methods for maintaining design strength in service, with appraising the strength and durability after design or with appraising the influencing factors, as a whole. Therefore, this strength and durability estimation system can help the aim of automatic design of cylindrical gears.

The Development of Advanced Buckling Strength Estimation System (선박 판부재의 개선된 좌굴평가 시스템의 개발)

  • Ham, J.H.;Kim, U.N.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.53-60
    • /
    • 1997
  • Generally, a safety estimation based on the buckling strength is carried out to evaluate the strength of plate members in the design process of ship hull structures and more accurate and efficient tool for the buckling strength estimation of enormous plate members of ship structure is naturally demended for saving design process. While, in the reason that the design codes of classification societies do not consider the various effects or include some effects roughly, considerate safe side results are suggested occasionally. In this study, advanced buckling strength estimation system prepared various classification buckling evaluation codes and new evaluation code considering the effects of in-plane tension, plate boundary condition, lateral load & residual stress is developed using the window management system of engineering workstation. Additionally maximum deflection estimation formula is equipped for the increase of fabrication reliability of thin plate ship structure. From this evaluation system, more reliable buckling safety of plate panel will be guaranteed in the ship hull design stage. In order to expand the use of this system pc version system will be developed sooner or later.

  • PDF

Discerning the intensity of precipitation through acoustic and vibrational analysis of rainfall via XGBoost algorithm (XGBoost 알고리즘을 활용한 강우의 음향 및 진동 분석 기반의 강우강도 산정)

  • Seunghyun Hwang;Jinwook Lee;Hyeon-Joon Kim;Jongyun Byun;Changhyun Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.209-209
    • /
    • 2023
  • 본 연구에서는 강우 시 발생하는 음향 및 진동 신호를 기반으로 강우강도를 산정하기 위한 방법론을 제안하였다. 먼저, Raspberry Pi, 콘덴서 마이크 및 가속도 센서로 구성된 관측 기기로부터 실제 비가 내리는 환경에서의 음향 및 진동 신호를 수집하였다. 가속도 센서로부터 계측된 진동 신호를 활용하여 강우 유무에 대한 이진 분류를 수행하고, 강우가 발생한 것으로 판단된 기간에 해당하는 음향 신호에 Short-Time Fourier Transform 기술을 적용하여 주파수 영역에서 나타나는 magnitude의 평균과 표준 편차, 최고 주파수 등의 특징을 기반으로 강우강도를 산정하였다. 이를 위해 앙상블 기반의 머신러닝 학습 모델인 XGBoost 알고리즘을 사용하였으며, 광학 우적계를 통해 관측한 강우강도와 산정 결과를 비교·평가하였다. 강우강도 산정 과정에서 사용된 음향 신호의 길이를 1초, 10초, 1분으로 구분하였으며, 무강우 기간 내 음향 정보로부터 배경 음향에 의한 노이즈를 제거하고자 하였다. 최종적으로 강우 유무 이진 분류 과정의 선행 여부, 음향 신호의 길이 및 노이즈 제거 방법에 따른 강우강도 산정 결과들에 대한 성능 비교를 통해 본 연구에서 제안하고자 하는 방법론의 실효성을 평가하였다.

  • PDF

Development of an Expert System for Fatigue Strength Assessment based on Genetic Algorithm (유전적 알고리즘 기반 피로강도평가 전문가시스템개발)

  • 최홍민;서정관;이제명;백점기;강성원;허희영
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.258-260
    • /
    • 2004
  • 현재의 피로강도 평가법에서는 각종 실험적인 방법 및 이론적인 방법 등 여러 가지 방법으로 피로강도설계를 하고 있는 실정이다. 그리고 이러한 피로특성에 대한 정확한 평가를 위해서 대상구조물에 작용하는 하중성분과 재료 및 구조적인 특성의 상호 연관관계에 대한 연구가 지속되어지고 있다. (중략)

  • PDF

Monitoring of Strength Development in Concrete Using Wireless Impedance Measurements (무선 임피던스 계측을 이용한 콘크리트 강도 발현 모니터링 기법)

  • Kim, Dong-Jin;Chang, Ha-Joo;Park, Jun-Hyun;Park, Seung-Hee;Park, Sun-Kyu
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.339-342
    • /
    • 2010
  • 본 논문에서는 유/무선 임피던스 계측을 통하여 현장 타설 콘크리트의 강도 발현 모니터링 기법을 개발하였다. 최근 많이 사용되고 있는 고강도 콘크리트의 경우 강도 발현이 제대로 되지 않으면 건설 중 취성 파괴가 일어날 우려가 있으므로 현장에서의 강도 발현 모니터링이 중요시 되고 있다. 하지만 기존의 콘크리트 강도 평가 방법은 고가의 장비가 필요하거나 복잡한 수학식을 통하여 이루어 졌기에 현장에서는 효율적으로 사용되기 힘들었다. 이에 압전 센서 기반 임피던스 측정을 통하여 콘크리트의 강도 발현을 모니터링하는 기법을 제안하였다. 구조물의 임피던스는 구조물 손상이나 강도 변화와 같은 구조물의 물성 변화 발생 시 공진주파수가 이동하는 특징이 있다. 이를 기반으로 콘크리트 구조물의 공진주파수 변화를 관찰하여 대상 구조물의 강도를 모니터링하는 기법을 개발하였으며 유/무선 임피던스 계측을 동시에 실시하여 무선 임피던스 측정의 유효성을 평가하였다. 그리고 고강도 콘크리트에서의 적용을 평가하기 위하여 설계 강도 30MPa, 100MPa의 콘크리트에 대하여 유/무선 임피던스 측정을 실시하였다. 이를 통해 본 논문에서는 무선 임피던스 계측을 이용하여 접근하기 어려운 곳이나 케이블 연결이 어려운 곳에서도 실시간으로 구조물의 강도 발현 모니터링이 가능한 시스템을 제안하였다.

  • PDF

Strength and Carbonation Characteristics in OPC Concrete under Long-Term Exposure Conditions in Various Sea Environments (다양한 해양환경에 장기 노출된 OPC 콘크리트의 강도 및 탄산화 특성 )

  • Hyeon-Woo Lee;Geum-Chae Shin;Seung-Jun Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.53-60
    • /
    • 2024
  • Compressive strength in concrete has many affecting parameters and varies with exposure conditions. Although the concrete has same mix proportions, its properties are different with exposure conditions, and sea-environment can be classified into three groups such as tidal, atmospheric, and sea submerged region particularly. In this study, compressive strength was evaluated on 7-year-cured concrete and the results from previous equations (KDS, ACI, CEB, and JSCE) were compared with them. Furthermore the strength and carbonation progress were evaluated on concrete cured for 7 years exposed to three different sea environment. Three levels of w/c (water to cement) ratio (0.37, 0.42, and 0.47) and three different exposure conditions (tidal, atmospheric, and submerged) were considered. The results from wet-cured condition are all higher than those from the previously proposed equations, and the results from different sea exposure conditions (tidal, atmospheric, and submerged region) were lower than those from wet-cured condition. A reduction of strength was evaluated with increasing w/c ratio and the minimum strength was evaluated in the sea-submerged conditions. Several experimental constants applicable to the previous equations were obtained from regression analysis since the strength change with w/c ratios were not considered in those equations. Regarding carbonation depth with different exposure conditions, higher carbonation depth clearly was observed with increasing w/c ratios, and evaluated in the order of atmospheric, submerged, and tidal region. Considerable carbonation depth was observed in submerged and tidal region due to sulfate ion and dissloved carbon dioxide as well.

Evaluation of Strength and Durability of Mortar using Ferronickel Slag Powder and Admixtures (페로니켈슬래그 미분말 및 혼화재의 복합사용에 따른 모르타르의 강도 및 내구성 평가)

  • Jo, Seol-Ah;Yoo, Jeong-Hwan;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.262-270
    • /
    • 2019
  • Ferronickel slag, which is an industrial byproduct, is activated by mechanochemical reaction as a nonferrous metal and can be used as an admixture. Therefore, ferronickel slag is used as a substitute resource of admixture. In this study, to evaluate the effect of mixed of ferronickel slag powder and admixture, a mortar using a mixture of ferronickel slag powder, quicklime, gypsum and calcium chloride was fabricated by vibrated and rolled manufacturing method. Strength were evaluated by flexural and compressive strength tests, and durability was evaluated by performing chlorine ion penetration resistance and chemical resistance test. When the substitution ratio of ferronickel slag powder is constant, it is considered that the mixed use of quicklime, gypsum and calcium chloride as admixtures increases the performance.

Design of Anti-Surge Valve for FPSO Fuel Gas Compressor System (FPSO용 연료가스압축 시스템을 위한 서지방지 밸브 설계)

  • Park, Hyung-Wook;Cho, Jong-Rae;Lee, Seung-Min;Park, Jong-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.443-450
    • /
    • 2011
  • Fuel gas compressor system is applied to medium FPSO. In order to avoid surge, this system used the anti-surge valves. When surge occurs it may lead to system's fracture. So anti-surge valves are evaluated structural strength and structural safety. Especially, in emergency mode, valves are must be guaranteed structural safety. In this study, structural strength and structural safety of anti-surge valve was evaluated using the numerical simulation. Unigraphics NX 4.0 was used as Geometrical models, structural strength and structural safety calculation were carried out by ANSYS Workbench 12.1. The ASME Boiler & Pressure Vessel Code is refer to allowable strength and safety factor of the valves.

Evaluation of Strength Reduction Factors using Smooth Hysteretic Behavior (완만한 곡선형 이력거동을 이용한 강도감소계수의 평가)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.49-60
    • /
    • 2010
  • The actual hysteretic behavior of structural elements and systems is smooth. Smooth hysteretic behavior is more representative of actual behavior than bi-linear or piece-wise linear stiffness degrading models. The strength reduction factor in seismic design is used to reduce the elastic strength demand to design levels. In this study, the effect of smoothness on the strength reduction factor is evaluated for several smooth hysteretic systems subjected to near-fault and far-fault earthquakes. For design purposes, a simple expression of the strength reduction factor considering hysteretic smoothness and earthquake characteristics, represented as near-fault and far-fault earthquakes, is proposed. The strength reduction factors calculated by the proposed simple formulation are more similar to the factors directly obtained from inelastic response spectrum analyses than those calculated by several existing formulas.