• Title/Summary/Keyword: 강도감소 모델

Search Result 363, Processing Time 0.023 seconds

Comparisons of Numerical Analyses considering the Effects of Shear Strength Degradation For Nonseismic Designed RC Frame (비내진 설계된 RC 골조에 대한 전단강도 감소 효과를 고려한 수치해석의 비교)

  • Lee, Young-Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.1-8
    • /
    • 2006
  • Nonseismic designed RC frame have a possibility of shear failure because of deficiencies of reinforcing details. To model the shear failure in numerical analysis, shear strength degradation models which Include Moehle's and ATC 40 are compared and applied to push-over analysis. For numerical analysis, three storied building frame is selected and designed according to Korean Concrete Design Code(2003). As results, It is shown that Moehle's shear strength degradation model estimates the shear strength lower than NZSEE model and has less variation than ATC 40 model and all the shear strengths of models are greater than the nominal shear strength of ACI 318. Also, from the numerical analysis, it is pointed out that there may be great difference in lateral drift capacity if a different shear strength model is used. And the capacity can be severely underestimated if the restraining model of plastic rotation of ATC 40 is used, compared to the use of shear spring model for shear degradation.

Determination of the Strength and Stiffness Degradation Factor for Circular R/C Bridge Piers (원형 철근콘크리트 교각의 강성 및 강도감소지수 결정)

  • 이대형;정영수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.73-82
    • /
    • 2000
  • 본연구의 목적은 반복하중을 받는 철근콘크리트 교량 교각의 비선형 이력거동을 해석적으로 예측하는 것이다 이를 위해서 반복적인 횡하중이 작용하는 경우에 실험결과와 일치하는 교각의 하중-변위 이력곡선을 도출하고자 수정된 trilinar 이력거동모델을 이용하였다 철근과 콘크리트의 비선형 거동특성과 각 하중단계에 따른 교각의 중립축을 구하여 소성힌지부의 모멘트와 변형률을 구하고 반복하중하에서의 강성의 변화를 해석적으로 모형화하기 위하여 각기 다른 강성을 갖는 5가지 지선을 갖춘 형태의 이력거동모델식을 제안하였다 본 연구에서는 실험적으로 구한 하중-변위 이력곡선을 이용하여 축하중비 주철근비 및 구속철근비에 따른 강도감소지수와 강성감소지수의 영향을 회귀분석을 이용하여 일반식으로 제안하였다 새로운 이력거동 해석 모델을 프로그램 SARCF III에 적용함으로써 기존 철근콘크리트 교각에 강도 및 강성감소 현상을 정확하게 예측하였다

  • PDF

Heat Transfer Modeling of Fiber-embedded Fire-Resistant High Strength Concrete (섬유혼입 내화 고강도 콘크리트의 열전달 모델)

  • Shin, Young-Sub;Han, Tong-Seok;Youm, Kwang-Soo;Jeon, Hyun-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 2011
  • High strength concrete used for large structures is vulnerable to fire due to explosive spalling when it is heated. Recently, various research is conducted to enhance the fire-resistance of the high strength concrete by reducing the explosive spalling at the elevated temperature. In this study, a heat transfer analysis model is proposed for a fiber-embedded fire-resistant high strength concrete. The material model of the fire-resistant high strength concrete is selected from the calibrated material model of a high strength concrete incorporating thermal properties of fibers and physical behavior of internal concrete at the elevated temperature. By comparing the simulated results using the calibrated model with the experimental results, the heat transfer model of the fiber-embedded fire-resistant high strength concrete is proposed.

Evaluation of Strength Reduction Factors using Smooth Hysteretic Behavior (완만한 곡선형 이력거동을 이용한 강도감소계수의 평가)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.49-60
    • /
    • 2010
  • The actual hysteretic behavior of structural elements and systems is smooth. Smooth hysteretic behavior is more representative of actual behavior than bi-linear or piece-wise linear stiffness degrading models. The strength reduction factor in seismic design is used to reduce the elastic strength demand to design levels. In this study, the effect of smoothness on the strength reduction factor is evaluated for several smooth hysteretic systems subjected to near-fault and far-fault earthquakes. For design purposes, a simple expression of the strength reduction factor considering hysteretic smoothness and earthquake characteristics, represented as near-fault and far-fault earthquakes, is proposed. The strength reduction factors calculated by the proposed simple formulation are more similar to the factors directly obtained from inelastic response spectrum analyses than those calculated by several existing formulas.

Nonlinear FE Analysis of RC Shear Walls (철근콘크리트 전단벽의 비선형 유한요소해석)

  • 곽효경;김도연
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.293-308
    • /
    • 1999
  • 이 논문에서는 패널, 깊은 보 그리고 전단벽과 같이 평면응력상태하에 있는 철근콘크리트 구조물의 비선형 유한요소해석에 있어서의 직교이방성 콘크리트 구성 모델의 적용성을 보여준다. 등가의 일축 변형을 개념을 토대로 콘크리트의 구성 관계가 주변형률 축과 일치하고 하중이력에 따라 회전하는 직교하는 축에 대해 제시된다. 제안된 모델은 이축 압축응력상태와 인장-압축 응력상태에서 각각 압축강도의 증가와 인장 저항력의 감소효과를 보여주는 이축 파괴영역의 정의를 포함한다. 인장균열이 발생한 후, 콘크리트의 압축강도의 감소효과가 제시되고, 인장강화효과로 알려진 철근에 의해 지지되는 콘크리트의 인장응력이 고려된다. 평균응력과 평균변형률 개념을 사용하여 힘의 평형, 적합조건 그리고 철근과 철근을 둘러싼 콘크리트 사이의 부착응력-슬림 관계를 토대로 인장강화효과를 모사하기 위한 모델이 제안된다. 유한요소 모델에 의한 예측은 유용한 실험자료와의 비교에 의해 입증된다. 이 논문에서는 해석결과와 이상화한 전단 패널실험으로부터 얻어진 실험값의 비교연구가 수행되고, 제안된 모델의 타당성을 보여주기 위해 서로 다른 응력상태하의 전단 패널 보와 벽체의 힘-변위 관계를 평가하였다.

  • PDF

Size Effect of Compressive Strength of Concrete for the Non-standard Cylindrical Specimens (비표준형 실린더 공시체에 대한 콘크리트 압축강도의 크기효과)

  • 김진근;어석홍;이성태
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.105-113
    • /
    • 1997
  • The reduction phenomena of concrete compressive strength with the size of cylinders have been very interested in, but till now the adequate. analysis technique is not fixed. Based on the existing research results. the bigger the member size is, the smaller the strengt.h is. However. the real test ~.csults reveal that the wduction rate becomes blunt and there are considerable differences between size offrct law and real results. The punposc. ofthis paper is to propose tho model equat.ion which covers the compressive strength of' cylinder specimens in case of general hight/dialnetcr ratio in terms of the size effect. he effect of maximum aggregate size on the microcrack zone was also studied, and the model equation was proposed by considering the concept of'the characteristic length. These results will also be used to predict the cornprcssivt. stxngth of various sized concrete cores sampled from existing structures.

A comparative study on the TBM disc cutter wear prediction model (TBM 디스크 커터 마모 예측 모델 비교 연구)

  • Ko, Tae Young;Yoon, Hyun Jin;Son, Young Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.6
    • /
    • pp.533-542
    • /
    • 2014
  • In this study TBM disc cutter prediction models including Gehring, CSM and NTNU models were investigated and the characteristics of the models were examined. The influence of penetration, uniaxial compressive strength and abrasiveness index on the models was analyzed. The life of disc cutter linearly increases with penetration per revolution and decreases with increasing uniaxial compressive strength of rocks. As the abrasiveness index, CAI, increases, the life of disc cutter in Gehring and CSM model decreases. On the contrary, the life of disc cutter life in NTNU model decreases with increasing CLI. Also, comparisons of predicted disc life were made between models using actual job site data.

Size Effect of Compressive Strength of Concrete for the Cylindrical Specimens Considering Strength Level (강도수준을 고려한 원주형 공시체에 대한 콘크리트 압축강도의 크기효과)

  • Kim, Hee-Sung;Jin, Chi-Sub;Eo, Seok-Hong
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.95-103
    • /
    • 1999
  • The reduction phenomena of concrete compressive strength with the size of specimens have been extensively investigated, but till now the adequate analysis technique is not fixed. The existing research results show that the bigger the member size, the smaller the strength. This means the nonlinear fracture mechanics theory is needed in order to analyze the fracture behaviors of concrete and the size effect. There is a few model equations that is to predict the size effect of compressive strength of standard and non-standard cylindrical specimen. However, theses equations did not considered the difference of fracturing mechanism which depends on the strength level. In this paper, model equations to predict compressive strength of concrete considering the size effect and strength level are suggested. The size effect model suggested in this paper shows good prediction compared with the existing test data of various concrete size and strength level.

Analysis of Long-Term Performance of Geogrids by Considering Interaction among Reduction Factors (감소계수 상호영향을 고려한 지오그리드의 장기성능 해석)

  • Jeon, Han-Yong;Kim, Yuan-Chun;Jang, Yeon-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.55-65
    • /
    • 2012
  • Total reduction factor that is used when calculating allowable tensile strength of geogrids is made by multiplying the installation damage reduction factor ($RF_{ID}$), chemical degradation reduction factor ($RF_D$), and creep reduction factor ($RF_{CR}$) etc. In case of a model estimating allowable tensile strength considering reduction factor over the short-term tensile strength of geogrids, it has a limit of not considering interaction force between reduction factors. Junction strength comes to be reduced by installation damages or chemical degradation in the same way as tensile strength. Single junction test method cannot properly test damaged samples and shows large deviations as it does not consider scale effect. Besides, regarding calculating shear strength, no reasonable study on reduction factors was conducted yet. Therefore, in this study, reduction factors that may affect the long-term performance of geogrids were revaluated considering various conditions and accurate long-term allowable tensile strength was calculated considering interrelation between reduction factors. Creep results after installation damage and chemical resistance test showed lower value than calculated value according to GRI GG-4. After the installation damage test and the chemical resistance test, the reduction factor of junction strength was less than that of tensile strength. Shear strength before and after installation damage showed no change or increase.

Size Effect for Flexural Compressive Strength of Concrete (콘크리트의 휨 압축강도의 크기효과)

  • Kim, Jin-Keun;Yi, Seong-Tae;Yang, Eun-Ik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 1999
  • When the ultimate strength of a concrete flexural member is evaluated, the effect of member size is usually not considered. For various types of loading, however, the strength always decreases with the increment of member size. In this paper the size effect of a flexural compression member is investigated by experiments. For this purpose, a series of C-shaped specimens subjected to axial compressive load and bending moment was tested using three different sizes of specimens with a compressive strength of 528 kg/$cm^2$. According to test results the size effect on flexural compressive strength was apparent, and more distinct than that for uniaxial compressive strength of cylinders. Finally a model equation was derived using regression analyses with experimental data.